

The genetics of susceptibility to malaria

Gavin Band

Adelphi Genetics Forum Wednesday 18th October 2023

1949

TIME

2023

A tale of three genomes

Anopheles mosquitos

Human host

Plasmodium falciparum (malaria parasite)

also P.vivax, P. malariae, P.ovale

3

Reasons to be optimistic

Several countries have eliminated malaria, several more on course to do so by 2025

WHO World Malaria Report 2022

Reasons to be concerned

Rising antimalarial and insecticide resistance, including in Africa

Talk outline

The "classical" variants Discoveries from genome-wide association studies Host-parasite genetic interactions

1949

TIME

2023

The malaria hypothesis

Distribution of *P.falciparum* malaria in Africa

Distribution of sickle heterozygotes in Africa "Montalenti [recalled] a gene, lethal in the homozygous state, which occurs in the heterozygous state with such frequency in some populations (more than 10%) that one must admit that it represents [..] an advantage for individuals that carry it"

- transcript of 1949 meeting between J.B.S Haldane and G. Montalenti

"1949 was an annus mirabilis when the modern phase of research on haemoglobinopathies was initiated. [...] Montalenti observed high frequencies of thalassemia heterozygotes in formerly malarious parts of Italy, and I observed high frequencies of sickle-cell heterozygotes in formerly malarious parts of Kenya.

- A.C.Allison

P.W. Hedrick, Heredity (2011) A. C. Allison - Biochem molecular biology education (2006)

WELLCOME CENTRE for HUMAN GENETICS

T		т
1	ABLE	1

	With Parasitaemia	Without Parasitaemia	Total
Sicklers	 12 (27·9%)	31 (72·1%)	43
Non-sicklers	113 (45·7%)	134 (53·3%)	247

Allison A. C. BMJ (1954)

The discovery of the protective effect of sickle haemoglobin.

Infection observed at ~2-fold lower rates in A/S individuals in this sample of children from Uganda (N = 290)

		IABLE	1	
		With Parasitaemia	Without Parasitaemia	Total
Sicklers Non-sicklers	::	12 (27·9%) 113 (45·7%)	31 (72·1%) 134 (53·3%)	43 247

Allison A. C. BMJ (1954)

The discovery of the protective effect of sickle haemoglobin.

Infection observed at ~2-fold lower rates in this sample of children from Uganda (N = 290)

In severe malaria cases:

Effect size against *severe malaria* is stronger – a 10-fold protective effect .

Now replicated across many populations and studies.

The malaria hypothesis

"In the less malarious parts of Accra about 5% of children died from malaria before they were 5 years old [..] fairly evenly spread over the first five years of life. In the more malarious suburban areas, there were many more deaths from malaria in the first two years of life"

- Colbourne M.J. and Edington G.M., BMJ 1956

Malaria provides a *positive selective* force on these human genetic alleles – pushing them to higher frequency.

Sickle homozygotes and heterozygots

Sickle cell anaemia aetiology is well understood ...

Haemoglobin

Edelstein 1973

P.S. Frenette and G.F. Atweh, JCI (2007)

...but it's still not really understood how sickle heterozygotes are protected although many mechanisms have been proposed

The malaria hypothesis

Malaria provides a *positive selective force* on these human genetic alleles – pushing them to higher frequency.

Anaemia causes a negative selective force.

What would happen if this balancing force wasn't there?

The sweep of protection against *P.vivax*

Duffy –ve allele frequency

...CCAA**GATA**AGAGC...

DARC Gene expressed

The GATA transcription factor binds to a DNA motif upstream of the DARC gene, causing gene expression

One of the few examples of a selective sweep in the human genome

The sweep of protection against *P.vivax*

Duffy –ve allele frequency

One of the few examples of a selective sweep in the human genome

Discovery of	Discovery of		
protection due	FY*0 (Pvivay)	Many other allel	es
(1950s)	(1970s)	proposed)	

1949

2005

"How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria" – Dominic Kwiatkowski Am J Hum Genet 2005

: Beta HbS, I β - tha	a-globin HbC, HbE lassaemia α -	p <i>ha-globin</i> thalassaemia	Glycophorin A and B deletions	G6PD deficiency	"Band 3" ovalocytosis	(DARC For P.vivax)
	Haptogle	obin	O blood group	PIEZO1		
toadhesion:	CD36	CR1	ICAM1	PECAM1		
Immunity:	FCGR2A	<i>CD40</i> ligand Immune activation	HLA antigen presentation	receptor	ts Interle	oukins
	M	BL2 NOS2	A Tumer Necrosis	Factor Interfe	ron Gamma	

"How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria" – Dominic Kwiatkowski Am J Hum Genet 2005

C

"When the same polymorphism has been tested in different geographical locations, the results have been variable - not simply failure to replicate but, in some cases, the association of the same polymorphism with susceptibility to severe malaria in one study and with resistance in another."

Discove protectio	ry of I n due	Discovery FY*0 (Pvivay	/ of	Many ot	ner allel	es	
(1950)s)	(1970s ↓		prop	osed)		
1949	\mathbf{X}					200	5

"How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria" – Dominic Kwiatkowski Am J Hum Genet 2005

Talk outline

Discoveries from genome-wide association studies

1949

TIME

2023

MalariaGEN collected over 30,000 cases and controls

а				
Whole-genom	ne seo	quen	ces	
Group	Trios	Duo	s Other	TOTAL
 Gambia 				
FULA	31	1	5	100
JOLA	32	1	2	100
MANDINKA	33	0	1	100
WOLLOF	32	1	3	98
Burkina Faso				
MOSSI	0	0	57	57
Cameroon				
BANTU	5	3	11	31
SEMIBANTU	8	0	7	32
Tanzania				
CHAGGA	21	2	13	80
PARE	22	2	7	77
WASAAMBA	23	6	9	90

Study samples								
Group	Cases	Controls	TOTAL					
Africa								
Gambia	2567	2605	5172					
Mali	274	183	457					
📕 Burkina Faso	733	596	1329					
Ghana	399	320	719					
Nigeria	113	22	135					
Cameroon	592	685	1277					
Malawi	1182	1317	2499					
📕 Tanzania	416	403	819					
📕 Kenya	1681	1615	3296					
Asia								
Vietnam	718	546	1264					
Oceania								
PNG	402	374	776					

~400 population individuals to add to available reference genetic data Over 17,000 severe cases and controls with human genome-wide data

Only a handful of variants show strong associations

Position in human genome

The human genome is very big, with millions of variants. You need very strong evidence (say > 10^6) to get convinced in this type of study.

	: Bet HbS β-th	t <i>a-globin</i> , HbC, HbE alassaemia	Alpha-globin α - thalassaemia	Glycop	phorin A and deletions	B G6P deficier	D "Banncy ovalu	ind 3" ocytosis	
		Hapt	toglobin	O bloo	d group	PIE	Z01		
/t	oadhesion	CD36		CR1	ICAM1		ECAM1		
	Immunity:	FCGR2A	<i>CD40</i> lig Immune acti	and ivation an	HLA tigen presentat	rion cor	eceptor nponents	Interlet	ıkins
			MBL2	NOS2A	Tumer Necro	osis Factor	Interferon G	amma	

	: Beta-globin HbS, HbC, HbE β - thalassaemia	Alpha-globin α - thalassaemia	Glycophorin A and B	G6PD deficiency	"Band 3" ovalocytosis
		Haptoglobin	O blood group	PIEZO1	
y	oadhesion:	D36 CR1	TCAM1	PECAM1	
	Immunity: FCGR	2A CD40 ligand Immune activation	HLA antigen presentation	Interferon receptor component	s Interleakins
		MBL2 NOS	ZA Tumer Necrosis	Factor Interfer	on Gamma

	Beta-globin HbS, HbC, HbE β - thalassaemia	Alpha-α α - thalas	globin saemia	Glycopho – dek + dupl	rin A and B etions- ications!	G6PD deficiency	"Band 3 ovalocyto	3" sis
		Haptoglobin		D blood gi	roup	PJEZO1	A RBC d	TP2B4 calcium pump!
/toadhe	sion:	D36	CRI		ICAM1	PECAM		
Immu	nity: FCGR	ZÁ CD Imma	40 ligand ine activation	antige	HLA	Interfer recepto compone	on r I nts	nterleakins
		MBL2	NOS2A	Tur	ner <mark>Necro</mark> sis Fa	actor Inter	feron Gamı	ma

Only a handful of variants show strong associations

Position in human genome

The human genome is very big, with millions of variants. You need very strong evidence (say > 10^6) to get convinced in this type of study.

Erythrocyte-specific calcium control at ATP2B4

Erythrocyte-specific calcium control at ATP2B4

Erythrocyte-specific calcium control at ATP2B4

WELLCOME CENTRE for HUMAN GENETICS

Lessard et al 2017, Zambo et al 2017 ²⁷

Only a handful of variants show strong associations

Position in human genome

The human genome is very big, with millions of variants. You need very strong evidence (say > 10^6) to get convinced in this type of study.

Structural variation of glycophorins is associated with protection

"Dantu NE" blood group variant, only found in parts of east Africa

E. Leffler et al Science 2017

Structural variation of glycophorins is associated with protection

"Dantu NE" blood group variant, only found in parts of east Africa

E. Leffler et al Science 2017

Sickle haemoglobin Glycophorin A/B duplications! ATP2B4 (RBC calcium channel)

Blood group O

(Intragenic SNP)

A substantial proportion of the heritability remains unexplained

That is – there is probably more to find, if only we had large enough samples.

Talk outline

Host-parasite genetic interactions

1949

TIME

2023

O blood type frequency ~ 50% RR ~ 0.75 (recessive)

ATP2B4 calcium pump variation frequency ~ 50% RR ~ 0.66 (recessive) Dantu blood type frequency ~ 0-10% RR ~ 0.6 (additive)

> Sickle haemoglobin (HbS) *Frequency ~ 2-20% RR ~ 0.1-0.2* (heterozygote)

> > Allison Br Med. J. (1954)

GWAS of severe malaria susceptibility - MalariaGEN Nature Communications 2019

O blood type

Dantu blood type

ATP2B4 calcium pump variation

Sickle haemoglobin (HbS)

P.falciparum 23Mb genome >5,000 genes millions of variants

Have parasite populations adapted? (And is this detectable in current populations?)

Human – *P.falciparum* genetic association study

"Malaria protection due to sickle haemoglobin depends on parasite genotype", 2021

https://doi.org/10.1038/s41586-021-04288-3

Plan of our analysis:

1. Sequence the *P.falciparum* genome in severe malaria cases selected from our previously published human GWAS*

2. Test for association between human and parasite genetic variants

*MalariaGEN human GWAS, Nature Communications 2019

Investigating human-parasite genetic interaction in severe malaria cases

 Sequence the *P.falciparum* genome in severe malaria cases from the published human GWAS

Variant calling and quality control

Previously generated human genome-wide genotypes and imputation

Overlap with human data N = 3,346 samples

WELLCOME CENTRE for HUMAN GENETICS

2. Test for association pairwise between human and *Pf* variants using a simple logistic regression framework:

 $g_{Pf} \sim g_{human} + country$

Software at: www.well.ox.ac.uk/~gav/hptest

Focus on candidates:

- Known protective mutations
- Further putative associations
- Blood group gene variants
- HLA alleles

Focus on 'easy' parts:

- Biallelic variants in core genome
- Seen in at least 25 infections across the sample.
 - 51,552 variants in total

(...excludes multiallelics and complex regions)

Three regions of the Pf genome are associated...

Evidence for association for *P.falciparum* variants (averaged over human variants)

P.falciparum genetic variants

Three regions of the Pf genome are associated with...

Three regions of the Pf genome are associated with HbS

Pfsa = "Plasmodium falciparum sickle-associated"

Three regions of the Pf genome are associated with HbS

The protective effect of HbS varies with Pfsa genotype

N = 4,071 severe malaria cases

45 of 49 severe infections of individuals with HbS genotypes were with *Pfsa+* parasites

The protective effect of HbS varies with Pfsa genotype

Pfsa+ parasites may have overcome HbS protection

https://doi.org/10.1038/s41586-021-04288-3 + caveats!

The protective effect of HbS varies with Pfsa genotype

Pfsa+ parasites may be able to overcome HbS protection

WELLCOME CENTRE for HUMAN GENETICS

https://doi.org/10.1038/s41586-021-04288-3 + caveats!

Pfsa frequencies vary widely within and between populations

WELLCOME CENTRE for HUMAN GENETICS

Pfsa frequencies vary widely within and between populations

(Malaria Atlas Project - Piel et al Lancet 2013)

WELLCOME CENTRE for HUMAN GENETICS

The Pfsa alleles are in strong linkage disequilibrium i.e. they co-occur

Correlation between

After excluding HbS individuals

malaria cases...

Pfsa+ alleles in severe

Gambia:

r=0.43

The Pfsa alleles are in strong linkage disequilibrium i.e. they co-occur

r=0.43

Correlation between *Pfsa+* alleles in severe malaria cases... After excluding HbS individuals

...or in milder infections:

*Pfsa1+*vs *Pfsa3+*

Country	N	
Gambia	169 (0.20
Guinea	133 (0.79
Mali	379 (D.84
Ghana	807 (0.86
Cameroon	174 (0.52
Congo	241 (0.64
Malawi	239 0	0.79
Tanzania	282	D.59
Kenya	89 (D.71

MalariaGEN Pf6

Gambia:

The Pfsa alleles are in strong linkage disequilibrium i.e. they co-occur

Parasites undergo sexual reproduction (meiosis) in mosquitos

This breaks down LD.

Kenya:

🖸 Gambia:

WELLCOME CENTRE for HUMAN GENETICS

"Reverse malaria hypothesis"

- Pfsa-carrying parasites are able to infect and cause disease in HbS-carrying individuals...
- ...if so, they are presumably positively selected in individuals carrying HbS a kind of reverse malaria hypothesis.
- This must be one of the selective forces generating the unusual populationgenetic features - but any competing forces are currently unknown.
- Raises many questions...

Puzzles and questions

What is the underlying biology?

The function of the *Pfsa* genes is not known

- How is the long-range LD maintained?
- What happens in other populations or in milder cases?
- How does sickle provide protection anyway?

Stop press

Hamilton W., Amenga-Etego L.

"A fourth locus in the Plasmodium falciparum genome associated with sickle haemoglobin"

bioRxiv (2023)

Parasite genome

severe cases from

Evidence

The missing part of my talk: mosquito genomics

The Anopheles gambiae 1000 Genomes Consortium, Nature 2017

Describing population structure.

Tracking insecticide resistance and gene flow.

Parasite-vector interactions?

Ellen

Leffler

KEMRI Wellcome Trust

Dominic Kwiatkowski 1953-2023

MRC The Gambia @ LSHTM Muminatou Jallow Fatoumatta Sisay-Joof Kalifa A. Bojang David J. Conway Giorgio Sirugo Umberto d'Alessandro

Wellcome Sanger Institute Richard D.Pearson Thuy Nguyen Sonia M. Goncalves Roberto Amato Cristina V. Ariani Eleanor Drury Dominic P. Kwiatkowski Jim Stalker

Medical

Council

Kirk Rockett

> KEMRI-Wellcome, Kilifi, Kenya Carolyne M. Ndila Alexandar W. Macharia Norbert Peshu Kevin Marsh Thomas N. Williams

> > **Duke University** Steve M. Taylor Joseph P. Saeelens USTTB Mali: Mahamadou Diakite

Tom Williams

University of Oxford Kirk A. Rockett Anna E. Jeffreys Christina Hubbart Kate Rowlands John Todd

Muminatou

Jallow

Thanks also: Annie Forster Jia-Yuan Zhang Andre Python

www.malariagen.net

"We thank the patients and staff at the Paediatric Department of the Royal Victoria Hospital in Banjul, Gambia, and at Kilifi County Hospital and the KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya for their help with this study."

Publication at: doi.org/10.1038/s41586-021-04288-3

BILL& MELINDA GATES foundation

MalariaGEN **GENOMIC EPIDEMIOLOGY NETWORK**

Parasite gene expression (RNA levels)

sickle-associated (*Pfsa+*) parasite

T=9 Hours post-invasion

• PF3D7_1127000 • other genes

Pfsa- parasite

The parasite takes about 48 hours to replicate within red cells (then they burst and the parasites reinvade). What does gene expression look like across this cycle?

Pfsa-parasite

T=15

Hours post-invasion

Pfsa-parasite

T=21

Hours post-invasion

Pfsa-parasite

T=24

Hours post-invasion

Pfsa- parasite

Hours post-invasion

Pfsa-parasite

Hours post-invasion

Pfsa-parasite

T=33

Hours post-invasion

T=39

Hours post-invasion

Pfsa-parasite

T=45

Hours post-invasion

Hours post-invasion