Principal components analysis

Gavin Band

Why do PCA?

PCA is good at detecting "directions" of major variation in your data. This might be:

- Population structure subpopulations having different allele frequencies.
- Unexpected ("cryptic") relationships.
- Artifacts such as genotyping errors, etc.

Apart from intrinsic interest, these are precisely the factors that need to be controlled for in association tests.

Performing PCA

1. Take genotype data^(*)...

N samples

Performing PCA

1. Take genotype data^(*)...

N samples

2. Form 'relatedness matrix'...

$$R = \frac{1}{L}X^t X$$

 r_{ij} = relatedness^(*) between sample i and sample j.

^(*) With suitable normalisation:

 $r_{ii} \approx 1$ if samples i and j are duplicates (or MZ twins)

 $r_{ij} \approx 0$ if samples i and j are unrelated (relative to the sample.)

^(*) Suitably normalised – see later.

Performing PCA

1. Take genotype data^(*)...

N samples

3. Eigen-decompose it...

 $R = UDU^t$

2. Form 'relatedness matrix'...

Eigen-decomposition picks out *directions in the data along which the variance is maximised*.

Eigenvalues represent *the variance of the data along these directions*.

You can do this in R! E.g:
> R = 1/L * (t(X) %*% X)
> V = eigen(R)\$vectors
> plot(V[,1], V[,2])

Example

(Simulated data, N=50 individuals, L=1000 SNPs)

Relatedness matrix R

> R = (1/1000) %*% (t(X) * X)

Example

(Simulated data, 50 individuals, 1000 SNPs)

Eigenvectors

Relatedness matrix R

 $v_1 \quad v_2$

Example

(Simulated data, 50 individuals, 1000 SNPs)

Relatedness matrix R

 $v_1 \quad v_2$

> plot(V[,1], V[,2])

Caution!

PCA picks up any source of variation

Relatedness or why scale by f(1-f)

At a SNP with frequency *f* in a 'base' population.

What is the probability of seeing these alleles in two haplotypes drawn from the population?

	INDIVIDUAL 2				
INDIVIDUAL 1		Allele A	Allele B	frequency	
	Allele A			f	
	Allele B			1-f	
	frequency	f	1-f		

Relatedness or why scale by f(1-f)

At a SNP with frequency *f* in a 'base' population.

What is the probability of seeing these alleles in two haplotypes drawn from the population?

	Individual 2				
INDIVIDUAL 1		Allele A	Allele B	frequency	
	Allele A	f^2	f(1-f)	f	
	Allele B	f(1-f)	(1-f) ²	1-f	
	frequency	f	1-f		
	CORRELATION = 0				

"Unrelated" individuals

Alleles drawn independently

Relatedness or why scale by f(1-f)

At a SNP with frequency *f* in a 'base' population.

What is the probability of seeing these alleles in two haplotypes drawn from the population?

	Individual 2				
INDIVIDUAL 1		Allele 1	Allele 2	total	
	Allele 1	rf + (1-r)f ²	(1-r)f(1-f)	f	
	Allele 2	(1-r)f(1-f)	r(1-f)+(1-r)(1-f)²	1-f	
		f	1-f		
	CORRELATION = r				

Individuals with relatedness r

Alleles co-inherited "identical by descent" with probability r

Relatedness and population history – a heuristic explanation

So $\frac{f_i - f}{\sqrt{f(1-f)}}$ = the amount of drift in population i, similar across all variants

Relatedness

$$r_{ij} = \frac{1}{L} \sum_{\text{SNPs}} \frac{(g_i - 2f) (g_j - 2f)}{2f(1 - f)}$$

Or: mean centre rows of X and divide by standard deviation, and compute as before:

$$R = \frac{1}{L}X^t X$$

Because f comes from the sample (not an ancestral population), $\frac{1}{2}r_{ij}$ is almost the same as a *kinship coefficient*, but is relative to the sample, not an ancestral population.

Association testing

Without controlling for structure:

Outcome ~ baseline + genotype

Traditional approaches control for structure using a number of principal components.:

Outcome ~ baseline + genotype + PC_1 + PC_2 + ...

The most recent *mixed model* approach includes the whole relatedness matrix to control for structure:

Outcome ~ baseline + genotype +

Association testing with linear mixed models

Outcome ~ baseline + genotype +

This is a bit like including all the PCs in a single regression, but constrained to explain a proportional amount of residual variation. In some circumstances it's been shown to control for structure better than using principal components directly. For example see "Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis", IMSGC & WTCCC2, Nature 2011. Or play with it at http://www.well.ox.ac.uk/wtccc2/ms.

However – these are *linear* models and some caveats remain in their use for case/control studies.

Summary

- PCA good at picking up sources of variation in datasets, including genetic datasets.
- Any form of variation can be picked up population structure, but also cohort or plate effects, genotyping error, sample duplication.
- This is what we want when controlling for structure / unwanted variation in an association test.

Software for performing PCA

• Plink (v1.9 or above)

http://www.cog-genomics.org/plink2

• EIGENSOFT

http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html

• Or use R!

Software for mixed model analysis

• GCTA

http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html

• FastLMM

http://research.microsoft.com/enus/um/redmond/projects/mscompbio/fastlmm/

• MMM

http://www.helsinki.fi/~mjxpirin/download.html

• GEMMA

http://www.xzlab.org/software.html

Recommended reading

- *"Population Structure and Eigenanalysis",* Patterson N, Price AL, Reich D, PLoS Genetics (2006). (The "SmartPCA" paper)
- *"Population Structure and Cryptic Relatedness in Genetic Association Studies",* Astle W. and Balding DJ, Statistical Science (2009).
- "*Reconciling the analysis of IBD and IBS in complex trait studies*", Powell JE, Visscher PM, Goddard ME Nat. Rev. Genetics (2010).
- "A Genealogical Interpretation of Principal Components Analysis", Gil McVean, PLoS Genetics (2009).
- *"Interpreting principal component analyses of spatial population genetic variation",* John Novembre and Matthew Stephens, Nature Genetics (2008).
- *"Advantages and pitfalls in the application of mixed-model association methods",* Yang et al, Nature Genetics (2014)