Principal components analysis



Why do PCA?

PCA is good at detecting “directions” of major
variation in your data. This might be:

e Population structure — subpopulations having
different allele frequencies.

e Unexpected (“cryptic”) relationships.
e Artifacts such as genotyping errors, etc.

Apart from intrinsic interest, these are precisely the
factors that need to be controlled for in association

tests.



Performing PCA

1. Take genotype data(®...
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2. Form ‘relatedness matrix’...
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rj = relatedness!) between sample i and sample j.

(*) With suitable normalisation:

r; = 1if samplesiand j are duplicates (or MZ twins)
r;= 0 if samples i and j are unrelated (relative to the sample.)
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3. Eigen-decompose it...

2. Form ‘relatedness matrix’...
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Eigen-decomposition picks out directions in the
data along which the variance is maximised.

Eigenvalues represent the variance of the data
along these directions.

You can do thisin R! E.g:

>R = 1/L * (t(X) %*% X)
> V = eigen(R)Svectors
> plot( V[,1], V[,2] )



Example
(Simulated data, N=50 individuals, L=1000 SNPs)

Relatedness matrix R

> R = (1/1000) %*% (t(X) * X)



Example
(Simulated data, 50 individuals, 1000 SNPs)

Eigenvectors

Relatedness matrix R ViV,

> V = eigen(R)Svectors



Example
(Simulated data, 50 individuals, 1000 SNPs)

Eigenvectors
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> plot( V[,1], V[,2] )



duplicate

Caution!

PCA picks up any source of variation
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Relatedness or why scale by f(1-f)

At a SNP with frequency fin a ‘base’ population.

What is the probability of seeing these alleles in two haplotypes drawn

from the population?

Allele A Allele B frequency
Allele A f
Allele B 1-f
frequency f 1-f
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At a SNP with frequency fin a ‘base’ population.

What is the probability of seeing these alleles in two haplotypes drawn

from the population?

Allele A Allele B frequency
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- CORRELATION =0

“Unrelated” individuals

Alleles drawn independently



Relatedness or why scale by f(1-f)

At a SNP with frequency fin a ‘base’ population.

What is the probability of seeing these alleles in two haplotypes drawn

from the population?

Allele 1 Allele 2 total
Allele 1  rf+(1-r)f? (1-r)f(1-f) f
Allele 2 (1-r)f(1-f) r(1-f)+(1-r)(1-f)? 1-f

f 1-f

- CORRELATION =1

Individuals with relatedness r

Alleles co-inherited ”identical by descent” with probability r




Relatedness and population history — a
heuristic explanation

Ancestral population

Ancestral

Drift in allele frequency
frequency =f

Drift in allele frequency proportional to f(1-f)

proportional to f(1-f)

Time

v
Population 1 Population 2
SNP frequency f; = f+ ¢, SNP frequency f, = f+ ¢,
fi—f

So

= the amount of drift in population i, similar across all variants
Vra-1) boP



Relatedness
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Or: mean centre rows of X and divide by standard deviation, and compute as before:
L,
R — _/X t)(
L

Because f comes from the sample (not an ancestral population), %r;; is almost the
same as a kinship coefficient, but is relative to the sample, not an ancestral

opulation.
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Association testing

Without controlling for structure:

Outcome ~ baseline + genotype

Traditional approaches control for structure using a
number of principal components.:

Outcome ~ baseline + genotype + PC; + PC, +

The most recent mixed model approach includes the
whole relatedness matrix to control for structure:

OQutcome ~ baseline + genotype +




Association testing with linear mixed
models

OQutcome ~ baseline + genotype +

This is a bit like including all the PCs in a single regression, but
constrained to explain a proportional amount of residual
variation. In some circumstances it’s been shown to control
for structure better than using principal components directly.
For example See “Genetic risk and a primary role for cell-mediated immune
mechanisms in multiple sclerosis”, IMSGC & WTccc2, Nature 2011. Or play with it at

http://www.well.ox.ac.uk/wtccc2/ms.

However — these are linear models and some caveats
remain in their use for case/control studies.



Summary

* PCA good at picking up sources of variation in
datasets, including genetic datasets.

* Any form of variation can be picked up —
population structure, but also cohort or plate
effects, genotyping error, sample duplication.

* This is what we want when controlling for
structure / unwanted variation in an association
test.



Software for performing PCA

* Plink (v1.9 or above)

http://www.cog-genomics.org/plink2

* EIGENSOFT

http://genetics.med.harvard.edu/reich/Reich Lab/Software.html

e Or useR!



Software for mixed model analysis

* GCTA

http://genetics.med.harvard.edu/reich/Reich Lab/Software.html

e FastLMM

http://research.microsoft.com/en-
us/um/redmond/projects/mscompbio/fastlmm/

MMM

http://www.helsinki.fi/~mjxpirin/download.html

 GEMMA

http://www.xzlab.org/software.html


http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html
http://research.microsoft.com/en-us/um/redmond/projects/mscompbio/fastlmm/
http://research.microsoft.com/en-us/um/redmond/projects/mscompbio/fastlmm/
http://www.helsinki.fi/~mjxpirin/download.html
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