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Learning objectives

Understand a genome-wide association study (GWAS) and the concept of a
hypothesis-free approach to studying genetic associations.

Have a working knowledge of the different steps involved in the conduct of GWAS,
including study design, quality control and basic analyses.

Be able to interpret and critically appraise evidence from genome-wide association
studies.

Understand the relevance of replication, meta-analysis and consortia, and multi-
ancestry approaches, in genome-wide association studies.

Appreciate the use of post-GWAS analyses including fine mapping, gene and pathway
analyses, and the concept of causal variants.



Lecture plan

Recap & fallout from last lecture
Gaining biological knowledge from GWAS
Biological examples

Heritability and prediction



Recap
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1. Most human traits are highly heritable 5
A large proportion of population variation is explained by genetics Twins

2. For many ‘complex’ !

traits, this is caused by e | ©
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3. To find these genetic variants, we can use genome-wide
association study methodology.
e.g. genotype cases and controls at a dense set of markers

across the genome, and do a statistical test of association.
Relies on block-like structure of LD to access untyped variants.

Aol VAR

Aim to uncover the underlying biology of disease.



Last time — basic GWAS approach

Basic idea: try to find causal effects of genetic variants on phenotypes.

—oooojocoocooooo—
Many traits are heritable but comp/ex. caused by many

genetic variants with small effects across the genome (along
with environmental factors, interactions, ...)

Strategy: use genome-wide genotyping and imputation to access as much genetic
variation as possible. For a disease phenotype, a case-control (or population control) design
then allows us to directly estimate the relative risk of each variant.

. P(disease|genotype G) Measures the association between genotype and phenotype.
Relative risk = . . "
P(disease|genotype g) Estimated as an odds ratio in the study

The accuracy of our estimates, and the power to detect nonzero effects, depends mainly
on the sample size and the frequency of the variant:
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Three potential problems

Case-control designs do not control for confounding — this has to be done in the analysis stage.

Association picks up all ‘causal’ paths from genotype to phenotype.
There are at least three important ways the study could be confounded:

Experimental confounding - for example, differential

genotyping between cases and controls.

Population
structure

|

Case/control
sampling

Confounding by LD

Nearby variants are correlated (in linkage disquilibrium) because
of population genetic drift broken down by recombination. This

G
Genotyping

process

Experiment e

Confounding by population structure -
for example, if the sampling structure, or the true
distribution of the phenotype, happens to covary
with genetic background

Linkage disequilibrium

g h

makes it easier to detect association, but harder to narrow down /

to the actual causal variant.



Consolidation question from last lecture

WTCCC2 GWAS Of multiple sclerosis (9,772 cases and 7,376 controls).

For further information about terms used below, hover ) ) chri rs11581062
over the red question marks.

Region

LRl disAL dbSNP id:’ rs11581062 % ’ P
EVI5 5 - : | -
veami status:” novel association ' MSCCC2 )
CD58 physical position:” 01:101,180,107

RGS1 association region:’ 01:100,983,315-101,455,310
C1orf106(KIF21B) functional tag:” N/A

No gene 2
e nearest gene: SLC30A7

MERTK candidate gene:’  VCAMI*
SP140
EOMES Signal
No gene

CBLB . .
TMEM39A(CD80) p-value discovery: 37e-10

cD86 OR discovery (95% CI):* 1.13 (1.09-1.18)
IL12A p-value replication:” 4.20e-02 (one-sided)

NFKB1(MANBA) OR replication (95% CI):* 1.07 (0.99-1.15)
IL7R

p-value combined:” 2.50e-10
PTGER4 i %
IL12B OR combined (95% CI):* 1.12 (1.1-1.13)
BACH2 Risk (non-risk) allele: G(A)
THEMIS

MYB(AHI1) Allele frequencies’
IL22RA2

No gene Country controls / cases control / case frequency
TAGAP Australia -1647 21032
2NF746 Belgium -/544 -/033
ULy Denmark -/332 -/0.32
myc i

Finland 2165/581 0237024
PVT1
i France 347/ 479 031/034
ZMIZ1 Germany 1699 / 1100 0.29/031
HHEX Ireland -/61 1034
cD6 Ttaly 5717745 030/0.33
CXCR5 Norway 1217953 026/0.28
TNFRSF1A Poland -/58 -1027
CLECL1 Spain -1205 1036 | n?
CYPz7B1 Sweden 1928/ 685 027/028 Ca n yOU exp ain:
GOl UK 5175/ 1854 0297032
ZP‘”"' USA 5370 /1382 0297032

-log10(p-value)
5
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Recombination cM/Mb

Proximal genes’

DPHS, EXTL2, SIPRI, SLC30A7, VCAM1*



http://www.well.ox.ac.uk/wtccc2/ms/

Anatomy of an association analysis

All GWAS should report data in a way that can be re-used by future studies.
This study used several previous GWAS to conduct replication. All the details are givenin a
supplementary table:

WAS + replicatio - combined replication [ icatid icatige icatid ANZ replication

log10

RiskA esFa
Gene|V | llel ¥
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Discovery and overall Evidence for the same ..and in the ...and in most of the individual
data as on web page effect direction was combined replication studies.
seen separately in both replication...

arms of the discovery...

This is a common analysis approach: to gain sample size, use meta-analysis to combine results
across several component studies. Then look for consistency between the studies.

1 z i
Vimeta = 1/ E v_ ,Bmeta = v—L XVmeta (Where v denotes squared standard error)
-l Uj = Vi
i i

” Inverse variance weighted fixed-effect meta-analysis’, gives results approximately equal to joint analysis of genotype data.



Dealing with population structure

This study suffered from a key
# cases / problem. Can you see what it is?

# controls
Per country




Dealing with population structure

Answer: very strong confounding by
population structure / sampling

# cases /
# controls
N
Case/control
sampling

»”

This is a quantile-quantile plot of all association

tests genome-wide. It shows vastly inflated — Actual —

log19 P-values. log10 P-
value

(A more advanced way to do this distinguishing
structure from polygenicity is LD score
regression — covered in a later lecture).

Expected —log10
P-value



Dealing with population structure

Answer: very strong confounding by
population structure / sampling

# cases /
# controls
N
Case/control
sampling

»”

Solution:

1. Use genome-wide genotypes to estimate genetic

relatedness between samples

2. Include the relatedness as a covariate in the

association test



Using regression to test for association
(instead of the 2x2 table method)

1. Logistic regression including 2. Linear mixed model
principal components

outcome ~ genotype + PCs outcome ~ genotype +

Include a genetic relatedness matrix computed from
genome-wide genotypes in the association test

Finland
Sweden
Norway
Denmark
Australia
NZ

UK
Germany
Belgium

rland Uses the entire matrix of relationships

USA
France
Spain
Italy

|
|
|
|
|
m
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|
=
m
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Controls

Plot of first two principal components obtained
from the genetic relatedness matrix

Uses just the strongest directions of variation
in relatedness (population structure) Most p-values are now not inflated



GWAS revolution

[ African 1,200,000
[ African Am./Caribbean

[ Asian

[ European

[ Hispanic/Latin American 1,000,000
I Other/mixed

800,000

600,000

WTCCC study

400,000

Multiple sclerosis study

l By 200,000

2009-01 2011-01 2013-01

Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019
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GWAS revolution
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Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019



Type 2 diabetes study

nature ARTICLES
genetlcs https://doi.org/10.1038/541588-018-0241-6

Fine-mapping type 2 diabetes loci to single-variant
resolution using high-density imputation and
islet-specific epigenome maps

#:DENNDZ'C * Previously reported T2D locus

KIF2B « Secondary signal within previously reported locus
* Novel T2D locus
» Secondary signal within novel locus

TCF7L2

Odds ratio per allele

0.05 0.10 0.50 1.00 5.00 10.00 50.00
Minor allele frequency (%)

Fig. 5 | The relationship between effect size and MAF. Conditional- and
joint-analysis effect size (y axis) and MAF (x axis) for 403 conditionally
independent SNPs. Previously reported T2D-associated variants are shown
in green, and novel variants are shown in purple. Stars and circles represent
the 'strongest regional lead at a locus’ and ‘lead variants for secondary

signals’, respectively.

N = 74,000 T2D cases
And 824,000 controls

Have gone from a handful of T2D
signals in 2007 to 403 in 2018

These loci give a detailed view of
the ‘genetic architecture’ of this
trait.



Type 2 diabetes study

But finding biology is hard

Number of signals/regions:

f 403 distinct signals identified in 243 regions

Number o variants in each signal:
1 6-10 11-20

——34— 205 signals fine-mapped to <50 variants ——

1 6-10 11-20 21-50

230 signals fine-mapped to <50 variants ——M —

403 distinct signals

[
o
=¥
=
13}
o
]
I

0

Posterior probability of variant being causal:
>99% 95-99% 90-95% 80-90% 50-10% 10-1%

100 variants have probability >50% |
>99% 95-99%  90-95% 80-90% 50-10% 10-1%

129 variants have probability >50% |

Genetic
credible

Variants with
Probability >50%

Functional
credible

Fig. 3 | Summary of fine-mapped associations. a, Distinct association signals. A single signal at 157 loci, and two to ten signals at 92. b, Number of variants
in genetic and functional 99%-credible sets. Eighteen and 23 signals were mapped to a single variant in genetic and functional credible sets, respectively.
¢, Distribution of the PPA of the variants in credible sets. Four of the 51 variants with PPA >80% in the genetic credible sets have lower PPAs in the
functional credible set, thus giving a total of 73 variants with PPA >80% in either.

Even using this large sample, and exploiting functional data in relevant cell types, only a
handful of these signals could be unambiguously mapped to individual variants.




Another example - IBD

Attempted fine-mapping of 139 signals of
association with inflammatory bowel disease
(IBD), using genotype data on 67,852

bowel individuals, and data on the functional state in
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At least 21 loci could not be assigned a plausible function despite the extensive data.



Another example - IBD

Attempted fine-mapping of 139 signals of
association with inflammatory bowel disease
(IBD), using genotype data on 67,852
individuals, and data on the functional state in
relevant cell types.

Among 45 likely
causal variants:
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At least 21 loci could not be assigned a plausible function despite the extensive data.



The circle of genetic causation

DNA gets physically
packaged up into
chromosomes...
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The circle of genetic causation

DNA gets physically
packaged up into
chromosomes...
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...inside cells, where it is
transcribed to form proteins
and other molecules...

...whose success is affected
by the traits they have...

/ ...that combine to make
individuals...

...that affect how the cells

behave, forming different
organs...



The circle of genetic causation

...passing on DNA, with
mutations and
recombination, to new
generations...

...whose success is affected
by the traits they have...

?—
...that gets physically
packaged up into
chromosomes...
There is
/ .
f/\\/f\\/’w complex biology

\\ 22 at all stages
< —
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\ / ...that combine to make
individuals...
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...that affect how the cells
behave, forming different
organs...

...inside cells, where it is
transcribed to form proteins
and other molecules...




The circle of genetic causation

...passing on DNA, with
mutations and
recombination, to new

generations ...whose success is affected

by the traits they have...
?—

microarrays,
genome sequencing

Clinical phenotype
measurements

...that gets physically

packaged up into

chromosomes... )
There is complex

biology at all stages
//\\//\\//\'\//\\//\’\// Biomarker

/ . measurements
D > And we can measure it.
‘\‘ / Chromatin state

<Y marker assays,
\y ChiP-seq, ...

(.

ANAFEET, ...that combine to make
spectroscopy, antibody e
binding Indiviauais...

—

...that affect how the cells
behave, forming different
organs...

...inside cells, where it is
transcribed to form proteins
and other molecules...




Gaining biological knowledge from GWAS

There are several ways we can try to translate knowledge of associations
into new biological insights. | will try to describe a few of these.

Fine-mapping — can we identify the actual causal variants underlying these
associations, and hence discover specific proteins and disease pathways?

Pathway analysis — even if we can’t fine-map, we can still try to assess
whether associations group into particular biological pathways that might
shed light on biology

Pleiotropy analysis — are associations shared between traits, improving our
understanding of disease etiology?

Heritability analysis — how much of the heritability do the signals explain?
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The circle of genetic causation

Example 1: a pathway analysis

/ ...that combine to make
individuals...




Pathway analysis

Pathway analyses and gene enrichment analysis seek to determine whether
there is a statistical tendency for association signals to fall into known groups
of related genes. These can be

- Known biological pathways (functional networks of proteins and molecules,
performing known specific biological functions) — such as those available
from the KEGG and Reactome databases

- More general classifications of genes by function, such as those from the
Gene Ontology Project

A slightly different direction is to try to group signals by genome function — for

example, do they lie in exons? Or gene promoters? Or in regulatory regions
active in particular cells?

https://www.genome.jp/kegg/ https://reactome.org http://geneontology.org



Pathway analysis example

The primary cause of MS has typically been thought to be inflammation causing
downstream neurodegeneration — with some debate about this. Can the GWAS of MS we

discussed shed light on this?

rs11581062*

rs12466022 « No gene
17595037 3 PLEK
rs17174870 MERTK
rs10201872 SP140
rs11129295 EOMES
rs669607 No gene

rs9282641* CD86

rs228614 NFKB1(MANBA)
rs2546890 IL12B
rs12212193 BACH2
rs802734 THEMIS
rs11154801 MYB(AHI1)

rs17066096 IL22RA2

rs1738074 TAGAP
rs354033 ZNF746

rs4410871 < Myc
rs2019960 PVT1
rs7923837 HHEX

rs630923 CXCR5

rs10466829 CLECL1

rs4902647 ZFP36L1
rs2300603 BATF
rs2119704 GALC(GPR65)
rs2744148 SOX8

rs180515 RPS6KB1
rs7238078 MALT1
rs1077667 TNFSF14

rs874628 MPV17L2(IL12RB1)
rs2303759 DKKL1(CD37)

152248359 CYP24A1
rs6062314 TNFRSF6B
rs2283792 H L MAPK1
rs140522 e b scoz

www.well.ox.ac.uk/wtccc2/ms/
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Clinical and Experimental Neuroimmunology 1 (2010) 2-11

REVIEW ARTICLE

What drives disease in multiple sclerosis: Inflammation or
neurodegeneration?

Hans Lassmann

Center for Brair al University of Vienna, Vienna, Austria

As the main figure shows, many of the
association signals looked like they were near
immune-system related genes.



Pathway analysis example

We:

« Assigned SNPs to their nearest gene using the available annotation
« Used the Gene Ontology Project to classify genes into functionally related groups
« Conducted a statistical test (Fisher’s exact test) to identify whether the nearest genes

were enriched in each group.

Particularly strong enrichment was
observed for immune system pathways
— notably in “T cell activation and
proliferation” (P=1.9x109)

“Although GO immune system genes only account
for 7% of human genes, in 30% of our association
regions the nearest gene to the lead SNP is an
immune system gene”

Ty1 cell
Published: 10 August 2011

Geneticrisk and a primary role for cell-mediated
immune mechanisms in multiple sclerosis

T,2 cell

The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium

T-helper-cell differentiation pathway )
(from Ingenuity Pathway Analysis software)

www.well.ox.ac.uk/wtccc2/ms/



Fine-mapping

“Fine-mapping” is the general term used for attempts to narrow down
association signals to the underlying causal variants. A typical process
involves:

« Gathering complete information on genetic variation in the region of interest
— for example by deep-sequencing a large number of individuals. (Large
databases such as gnomAD / TopMed now make this easier.)

« Gathering information on genome function — including gene structure and
regulatory regions.

« Potentially leveraging data from different ancestral backgrounds, hoping that
differences in LD patterns will help narrow down signals.

« Fitting models that attempt to parse apart multiple associations in the same
region

Possible underlying mechanisms are pretty diverse and a healthy dose of
genomic detective work is often needed.



The circle of genetic causation

Example 2: fine-mapping

/ ...that combine to make
individuals...




Plasmodium falciparum VS humans

Nature Communications: doi.org/10.1038/s41467-019-13480-z
or on bioArxiv: doi.org/10.1101/535898



https://doi.org/10.1038/s41467-019-13480-z

GWAS of susceptibility to severe malaria

Study samples

group cases

Africa
M Gambia 2567
W Mali 274
W Burkina Faso 733
W Ghana 399
W Nigeria 113
W Cameroon 592
W Malawi 1182
W Tanzania 416
Kenya 1681
Asia
W Vietham 718
Oceania
PNG 402

controls TOTAL

2605 5172
183 457
596 1329
320 719
22 135
685 1277
1317 2499
403 819
1615 3296

546 1264

776

~17,000 clinical samples from West and East Africa, Oceania and South East Asia.

Genotyped on the lllumina Omni 2.5M array

Malaria www.malariagen.net




Natural resistance is driven by red blood
cell variation

Known associations at O
New loci identified by GWAS blood group and sickle trait

Evidence

~20M SNPs across the human genome



Natural resistance is driven by red blood
cell variation

Known associations at O
New loci identified by GWAS blood group and sickle trait

Evidence

~20M SNPs across the human genome



SNPs on chromosome 4 are associated with
proection against severe malaria

Signal identified and replicated 4,921 Gambians
(rs186873296) 2,516 Malawians
T 2,984 Kenyans
0 MalariaGEN, Nature 2015
L .
S - :
) .
D oA .
ge! . 2
b Ez.
VPR (VRRIN.
H— FREM3
F—H#t GAB1 HGYPB
im USP38 W SMARCA5H GYPE HGYPA fi-
144.0Mb 144.5Mb 145.0Mb 145.5Mb

Chromosome 4



The association has quite large effect

Gambia
Malawi
Kenya

Combined discovery

Gambia --
Mali
BurkinaFaso
Ghana
Cameroon
Malawi ——_.-__E
Tanzania ————
Kenya e

Combined replication - . P=5.1x10°

1/4 1/2 1 2 4

Meta-analysis 4 . P=9.5x10"
OR=0.67 (0.6-0.76)

> 30% protective effect per copy of the derived allele
1

e error(og OR) =~ e T xg =)
X —J)X -




Can we finemap?

We had an exciting association. But fine-mapping has
proven to be difficult for many GWAS loci.

To hope for success we might need:

- Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?



SNPs on chromosome 4 are associated with
proection against severe malaria

Signal identified and replicated 4,921 Gambians
(rs186873296) 2,516 Malawians
< 2,984 Kenyans
0 MalariaGEN, Nature 2015
L .
0 o o
B/ . e % .:
8 Uy o o '&‘2’0“‘;
o *
] )
H— FREVIS
—HHt GAB1 HGYPB
im USP38 W SMARCASH GYPE HGYPA i

Glycophorins!

144.0Mb 144.5Mb 145.0Mb 145.5Mb



Glycophorins encode the ‘'MNS’ blood group

(antigenic molecules on RBC surface)
Glycophorins

Outside red blood
cell

Red blood cell
membrane

Actin

Spectrin

Adducin Intracellular

Inside red blood
cell

Grimes and Slater, The Inherited Metabolic Diseases, 1994



Glycophorins are receptors for P.falciparum
during red blood cell invasion

P. Falciparum parasite

P. falciparum membrane

Erythrocyte membrane

red blood cell

Miller et al, J. Exp. Med 1979 Tolia et al, Cell 2005

Glycophorin A



Can we finemap?

We had an exciting association. But fine-mapping has
proven to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?



Structural variants create deletions,
duplications, and hybrid genes

The MNS blood
group is highly
diverse, with over 45
known antigens.

Encoded by single
nucleotide

polymorphisms and
structural variants

Het od Dleorm ion
& resolutio

JS gregation 1 Segregatio L
- _ p-A

Deleted / 4%&_ A-B-A B é—_&
duplicated / hybrid ' ’
genes
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Can we finemap?

We had an exciting association. But fine-mapping has
proven to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
¥ - Good candidates for the causal mutation(s)?



Steps to fine-map

Step 1: type or sequence as much of the genetic
variation in the region as possible — hope to catch the
causal mutation.

Step 2: re-analyse the association.

Step 3: look for functional mutations



A regional reference panel capturing structural variation

We used the 1000 Genomes Project Phase lll reference panel, plus:

a

Whole-genome sequences
group trios duos other TOTAL

® Gambia
FULA 31
JOLA 32
MANDINKA 33
WOLLOF 32
® Burkina Faso
MOSSI 0
® Cameroon
BANTU 5
SEMIBANTU 8
® Tanzania
CHAGGA 21
PARE 22
WASAAMBA 23

1
1
0
1

Use whole-genome sequencing from over 3,600 individuals worldwide.
Discover genetic variation (including structural variants).

www.malariagen.net



Structural variants from sequencing data

Deletions
DEL1 deleted
DEL2 duplicated
B triplicated
DEL3
DEL4
DELS |®
DEL6 |
DEL7 |
DELS e o e e e TR Ry = ~
s Tl R
| | Ei || |8 |[{]]A

Duplications

= N N

| | Ei [[[B

DUP1

DUP2

DUP3

DUP4

2| DUPS

14% of Africans carry a CNV affecting these genes

A

DUP6

j| bupP7

Il DUP8

>



Before fine-mapping

log10(BF ayg)
3
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Original result before adding information from new African sequenced genomes



After fine-mapping

© - Previous top SNP
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Result after incorporating genetic variation discovered in sequenced samples



After fine-mapping

© - Previous top SNP DUP4
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Confirming structural variants using cluster plots

microarray intensities

This is how a microarray
cluster plot should look: 3
clusters for AA/AB / BB

genotypes



Confirming structural variants using cluster plots

Actually this signal was evident in our cluster plots

microarray intensities

This is how a microarray What we saw in this region
cluster plot should look: 3

clusters for AA/AB / BB
genotypes



Confirming structural variants using cluster plots

Still true that nothing seemed to be functional.
What next?

Protective: relative risk ~ 0.6

microarray intensities

Not
protective:
RR~0

o

This is how a microarray What we saw in this region
cluster plot should look: 3

clusters for AA/AB / BB
genotypes



Confirming structural variants using cluster plots

Omni 2.5M
intensities

duplicated

H-H—'l GYPB

We were able to use cluster plots to confirm individuals in our
GWAS really do carry the complicated structural variant “DUP4”.

DUP4 is pretty complicated — what could it be?



What is DUP4?

“‘Normal” haplotype

0 0—a

Human red blood cell

https://doi.ora/10.1126/science.aam6393
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What is DUP4?

“‘Normal” haplotype

i—i—8 BpEL—

DUP4 haplotype:

D D-l]—l]—l ~ Sing

300 kb ‘LJ kb

Human red blood cell

https://doi.ora/10.1126/science.aam6393
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Red blood cell tension protects against
severe malariainthe Dantublood group

Functional followup study —
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Dantu is globally rare...

The Dantu blood group has been found in:

1in44,112 Londoners”
Oin 1,000 Germanst
1in 320 African Americanst

0in 2870 Gambians*®



..but found at high frequency in east Africa

The Dantu blood group has been found in:

1in44,112 Londoners’

Oin 1,000 GermansT

1in 320 African Americanst
Oin 2870 Gambians®

1in12 Malawians*

1in6 Kenyans (from the Kilifi region)*

) ' Malawi Tanzania Kenya
Allele frequency. Gambia BurkinaFaso = Ghana Cameroon ‘:’ ‘:l

West Africa <— East Africa



The circle of genetic causation

Example 3: more fine-mapping

/ ...that combine to make
individuals...




Natural resistance is driven by red blood
cell variation

Known associations at O
New loci identified by GWAS blood group and sickle trait

Evidence

~20M SNPs across the human genome



Evidence for association
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Association near 2"? exon of ATP2B4

203.60Mb 203.62Mb 203.64Mb 203.66Mb 203.68Mb 203.70Mb 203.72Mb
T T T T T T T

[

r<=0.1 |D <= 0.5 rs4951377:203658471:A:G ® |mputed varignt

?>01! DY > 0.5 @ O + Omni 2.5M variant

> 031 D'l > 0.6 A Sequenom-typed variant

2505, D' > 0.7 o Imputed SV |
®r>07, °|D|>08 !
® 2509 ¢ e D>o09

i

it ATP28

203.60Mb 203.62Mb 203.64Mb 203.66Mb 203.68Mb 203.70Mb 203.72Mb
Position on chromosome 01

The associated SNPs cover a region around the second exon.
None of these SNPs make changes to the protein.
What could be going on?

“Canonical”
gene model for
ATP2B4

ATP2B4 = a red
cell “calcium

pump”



Cartoon of a gene

Introns
enhancer promoter
‘i —g—j—mr

Transcription /
factors bind...

5" UTR Exons 3" UTR

_
7

...and help recruit
RNA polymerase...

...which transcribes the gene into “pre-mRNA”.

The pre-mRNA is then typically further postranscriptionally modified to remove introns.

e

Coding sequence



Two ways to look at transcription

Genes
I ~
Long-range regulatory elements Promoters N\ N\ .
(enhancers, repressors/silencers, insulators) Transcripts Can IOOk at Chromat|n

state

RNA expression

2== RORDMAP .
EpIgENOMICS




ATP2B4 is widely expressed...

1st exon 2nd exon

£017 IMR90 fetal luna fbroblas

22 (PS OF 19,11 Col

E030 Primary neutrophis from
£026 Bone Marrow Derived Cul

oast varant Hu
oast Myoeoi
ahon Eminen

£053 Con
— otal Thym,
£077 Brain Hippocampus Middl
E074 Brain Substanta Niara
 Anterior C.

vuscie
77 Stomach Smooth Muscie
052 Fotal Stomach -

£096 Lur
ET13 Sowen
113 A545 E1OH

Chromatin states in 130 cell types

E120 Ostoobiast Primary Cells

Data from ENCODE / Roadmap Malaria-associated region



...but shows chromatin differences in RBCs

exon

2m1

exon

sadA) (|80 Qg | UI S8)e]S unewoly)

1$

p—
—

Proerythroblasts

Malaria-associated region

Data from Xu et al Dev Cell (2012)



ATP2B4 is widely expressed...

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

GENCODE v19
transcripts
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Non-erythroid
cells (i.e. no red
blood cells)



ATP2B4 has an erythroid-specific transcript

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

GENCODE v19 F——
transcripts
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ES-deriv’
Epithelial’
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Other’
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ENCODE2012 (except K562)'
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proerythroblast?

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast?
Fetal liver erythroblast®

110011,

Red cells do not have nuclei, so to capture

MRNA expression in red cells, these studies
Erythroid cells show a different experimentally differentiated stem cells into
expression pattern. the erythroid lineage, and measured

transcription before enucleation.



ATP2B4 has an erythroid-specific transcript

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

ESC!
ES-deriv’
Epithelial’

HSC & B-cell’
Blood & T-cell’
Neurosph'’
Heart'

Other’

Brain'
Digestive'
Muscle! : S
Thymus' __dll
ENCODE2012 (except K562)'
K5621

proerythroblast?

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast®
Fetal liver erythroblast®
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FANTOMS
transcripts

GWAS posterior

5 ol ] T GWAS SNPs

Putting together data from a variety of sources suggests the existence of an alternative
transcription start site near the GWAS signal, but only active in erythrocytes. How can this be?




What is different about RBCs?
o*-——9—HE—1I—I1—Hl

The transcription of genes in red blood cells is controlled by a
particular set of transcription factors — a key one is GATAL.

GATA1 is named after the DNA motif it recognises:

v1.factorbook.org




GATA1 binds just upstream of 2"? exon

Measured GATA1 binding

1st exon 2nd exon

ESC!
ES-deriv’
Epithelial’

HSC & B-cell’
Blood & T-cell’
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Other’
Brain'
Digestive'
Muscle! : S
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ENCODE2012 (except K562)' ;
K5621
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proerythroblast?

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast®
Fetal liver erythroblast®

FANTOMS
transcripts

GWAS posterior

5 ol ST GWASSNPs

GATA1 peaks .

ChlP-seq experiments show GATA1 binds just upstream of our new exon.
Moreover, one of the associated SNPs disrupts the GATA1 motif.




One of the malaria-associated SNPs disrupts the GATA site

c Association & }

signal I 11

o

b Known transcripts

CD34?

Erythroid BFU:
CFU?
cells By asooniie ,
fromtwo o e A S —
experimentS; Bone marroﬁfoel};%?orgﬂéctj DN et e

= = Fetal liver erythroblast’
N=3 & N=24 day 8 erythroid progenitors?
circulating erythrocytes?*

O GATA1 peaks =

e

. « « GGAGCGGTAAGATA. .. (malaria-protective allele)
s10715451 | GGAGCGATAAGATA. . . (i ik alele)

RNA * Risk allele creates GATA motif

expression and is associated with increased

ATPZ2B4 expression — of the
erythroid transcript




Does this really hold up?

Prediction: the alternative (=risk) allele creates a GATA1 site. It
would increase expression of ATP2B4 starting at the new exon.
But it wouldn’t affect expression of the ‘usual’ 15t exon.

per-exon eQTL effect?

rs10751451 C/T
(n=24 erythroblasts)




Functional hypothesis

ATP2B4 encodes a calcium pump (called PMCA4) in the RBC membrane.
It acts to remove calcium from the cell.

When the parasite invades, the membrane gets inverted around the
parasite, so presumably PMCA4 must also get inverted.

This might explain why lower expression of the
gene provides protection —since parasites require
calcium to grow effectively.

This is a hypothesis - not
experimentally tested (yet)!

PMCA4
Ca* /

Zambo et al, Cell Calcium 2017



Biology from GWAS - summary

Non-coding variants Long-distance interactions in the genome

Changes to gene expression
Polygenic ef

Cell-type / tissue heterogeneity

fects (lots of variants involved)
Plelotrop}/ (a variant affects lots of -

notypes at once)

Genetic interactions Host-pathogen interactions

Repetitive DNA / repeat expansions

Genome structural variation
Genome evolution

Anything that can happen, does happen.
...and there is lots of datal



Lecture plan

Recap & fallout from last lecture
Gaining biological knowledge from GWAS
Biological examples

Pleiotropy, heritability and prediction



We should be looking across traits

A. Regional associations B.rs635634 C—>T, all effects
Click on image to zoom % g
rs649129: eQTL
rs7873635: 0
rs8176746: B
rs1053878; A2
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Effect size (s.d./In[odds])

Pickrell et al Nat. Genet. 2016



Prospective cohort studies

A new crop of studies aims to create a database of deep

genotype, phenotype, and exposure data across large cohorts of

individuals sampled from the population or from health services.
DEIES

CHINA KADOOR/E
CARTYGENE BIOBANK
\_A_/
PEERANRRAL 5
CartaGene (Canada) "

THE PRECISION MEDICINE INITIATIVE

China Kadoorie Biobank
Precision Medicine Initiative (US)

biobank’

UK Biobank

The 100,000 genomes project (UK)



biobank’

http://www.ukbiobank.ac.uk/

Collected 500,000 UK individuals who were
40-69 years old in 2006-2010.

Participants provided blood, urine and saliva
samples. They also provided rich information
on health and lifestyle.

Participants have been extensively genotyped
and phenotyped



biobank’

http://www.ukbiobank.ac.uk/

“The UK Biobank... aims to include 500,000 people from
all around the UK... aged 40-69. This age group Is being
studied because it involves people at risk over the next
few decades of developing a wide range of important
diseases (including cancer, heart disease, stroke,
diabetes, dementia). The NHS treats the single largest
group of people anywhere in the world, and keeps
detailed records on all of thern from birth to death...
This will help researchers to understand the causes of
diseases better, and to find new ways to prevent and
treat many different conditions”



uk
biﬂbamk http:/fwww.ukbiobank.ac.uk/

Genetic data

N SNPs N samples
Genotyping on a 800,000 500,000
custom microarray
(Affymetrix UK
Biobank Axion array)
Imputation to almost 100 million 500,000

all common and rare
variants

Exome sequencing

Everything in gene
exons

500,000 in future
- by Regeneron

Genome sequencing

Everything

Sequencing is
underway




uk
biﬂbank http:/fwww.ukbiobank.ac.uk/

Markers within

genomic regions of “As of May 2018, there were over

prosnmvcnie] ROR ) . 47000 14,000 deaths, 79,000 participants
eran imagig (R0 125,000 Marasieieantt Wlth. cancer dllagnoses, and 400,QOO
Heam‘;g;";“:;:;‘;m%) | 45,000 participants with at least one hospital
HIGSSUISS e A T admission. Considerable efforts are
- =l now underway to incorporate .data
il coverage for improved from a range of other national
A K G e datasets including primary care,
~630,000 screening programmes, and disease-

. specific registries, as well as asking

lung function Genomics participants directly about health-

related outcomes through online

/Q Bk gidanrie questionnaire.  Efforts are also

W . lood, sal- 1) underway to develop scglab!e
monitoring gl - ,,,ﬁ;?*;ochemica, approaches that can characterize in
markers detail different health outcomes by

Whole body dual-energy . .
¥ray absorptiomelry cross-referencing multiple sources of
of bones and joints o 5 . y
Biiiabaana coded clinical information
|mpedance measures
Bycroft et al Nature 2018




biobank’

The UK biobank has let us discovery associations with 100s
of traits across the whole genome, and indeed many
variants are associated with many traits.
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Number of statistically significant assocaitions among 717 traits
Canela-Xandri et al, http://geneatlas.roslin.ed.ac.uk/phewas/



biobank’

Any researcher can apply for this data.

Submitted Access Applications by areas of interest from 30th March 2012 to 7th January 2019
(please note that applications could be in more than one grouping and archived applications are not included)
Total of 1,463 applications at various stages of adjudication

1003

m

I" | |i| | | el | : 4 T Number of registered researchers

® UK = Iinternational

7,500 registrations
68%

Number of researchers

1000

You can browse available data and apply
at https://www.ukbiobank.ac.uk




Finally — the largest GWAS conducted to date



Idea: if genetics determines a trait, then more genetically similar individuals should have
more similar phenotypes. Can estimate how much genetics determines trait variation by
comparing trait similarity in monozygotic (identical) and dizygotic twins.

In twins
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From GWAS

-0.01 0 0.01
Genetic relationship (adjusted estimate)

(Adult) height is ~90% heritable

Common SNPs explain a large proportion of the heritability
for human height (2010)

Jian Yang!, Beben Benyamin!, Brian P McEvoy!, Scott Gordon!, Anjali K Henders!, Dale R Nyholt!,
Pamela A Madden?, Andrew C Heath?, Nicholas G Martin!, Grant W Montgomery!, Michael E Goddard? &
Peter M Visscher!

About half of the 90% heritability is explained by common SNPs.
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GWAS of height in 5.4 million individuals

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475305; this version posted January 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A Saturated Map of Common Genetic Variants Associated with Human Height
from 5.4 Million Individuals of Diverse Ancestries

ABSTRACT

Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in
human height, but identifying the specific variants and associated regions requires huge
sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse
ancestries, that 12,111 independent SNPs that are significantly associated with height
account for nearly all of the common SNP-based heritability. These SNPs are clustered

within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering
~21% of the genome. The density of independent associations varies across the genome and
the regions of elevated density are enriched for biologically relevant genes. In out-of-
sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance
in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes,
associated regions, and gene prioritization are similar across ancestries, indicating that
reduced prediction accuracy is likely explained by linkage disequilibrium and allele
frequency differences within associated regions. Finally, we show that the relevant
biological pathways are detectable with smaller sample sizes than needed to implicate
causal genes and variants. Overall, this study, the largest GWAS to date, provides an
unprecedented saturated map of specific genomic regions containing the vast majority of
common height-associated variants.

This very preprint
appeared on bioRxiv in
January 2022

It claims to map
essentially all of the
common mutations that
determine human height.

There are 12,111 of them
and (grouped into regions)
they cover 21% of the
genome.

Yengo et al bioRxiv (2021) https://doi.org/10.1101/2022.01.07.475305



GWAS of height in 5.4 million indiiduals

—— mean genome-wide density: 2 (LOCO-S.E. 0.14)
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Each dot represents one of the 12,111 quasi-independent
genome-wide significant (GWS; P<5x10-8) height-associated SNPs identified using approximate conditional and joint multiple-SNP (COJO) analyses of our trans-
ancestry GWAS meta-analysis. Density was calculated for each associated SNP as the number of other independent associations within 100 kb. A density of 1 means
that a GWS COJO SNP share its location with another independent GWS COJO SNP within <100 kb. The average signal density across the genome is 2 (standard error;
S.E. 0.14). S.E. were calculated using a Leave-One-Chromosome-Out jackknife approach (LOCO-S.E.). Sub-significant SNPs are not represented on the figure.

12,111 SNPs in regions covering ~21% of genome



GWAS of height in 5.4 million indiiduals

Partitioned SNP-based heritability
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Proportion of SNP-based heritability within GWS loci: h

EUR HIS SAS EAS AFR

A " (1,130,264)  (1,277,112)  (1,222,935)  (1,110,588)  (1,180,574)
ncestries

(sample size) Ancestries (Total number of SNPs analysed)

The regions identified explain a very large proportion of the heritability of height — especially
in European populations. (The rest of the heritability is probably in rarer variants not
accessed by this study).



Conclusions and summary

Most human traits are highly heritable

For ‘complex’ traits, the effects are made up of many genetic
variants often with modest effects

GWAS study designs can find these variants. 100s of 1000s of
trait-associated SNPs have now been identified. They rely on
large samples and dense genotyping, and exploit ancestral
recombination between samples to narrow down signals.

A major frontier is to understand the biology and translate these
findings into clinically useful insights and predictions.

(We need lots of quantitively-minded people to do this!)
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