Malaria protection due to sickle haemoglobin depends on parasite genotype

Gavin Band ZJU Global Dialogue Series 14th July 2022

A bit about Oxford

Around Oxford

This talk

Background on malaria ullet

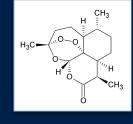
Why study malaria genetics? ullet

A search for human-parasite genetic interactions •

Parasite population genetics •

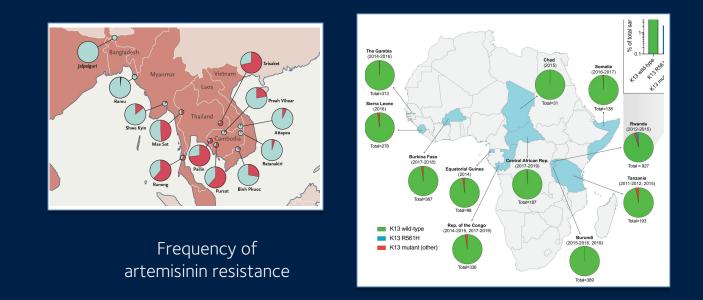
Toward biological function •

P.falciparum merozoite


Malaria remains a major killer

WHO >600,000 deaths due to *P.falciparum* malaria in 2020 The vast majority are among young children in Africa.

Current frontline treatments are based on the compound **artemisinin,** famously rediscovered in the 1970s by screening traditional Chinese medicines.


Tu Youyou Nobel Prize 2015 青蒿素 (Qinghaosu) Artemisinin

Artemisia annua

Artemisinin works but...

Resistance to artemisinin and other antimalarials is rising

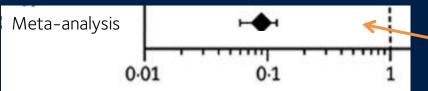
"*Recent evidence of the independent emergence of artemisinin partial resistance in [Africa] is of great global concern*" – WHO

Figures: Ashley et al, N. Engl. J. Med. 2014, Stokes et al, eLife 2021

Why study malaria genetics?

- 1. Uncover new aspects of **infection biology**
- 2. Study natural selection and evolution

Protection against infection...

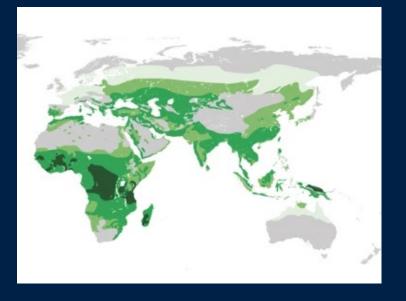

PROTECTION AFFORDED BY SICKLE-CELL TRAIT AGAINST SUBTERTIAN MALARIAL INFECTION

BY

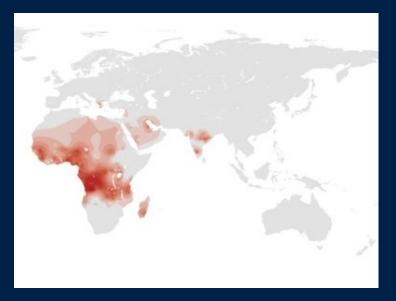
A. C. ALLISON, D.Phil., B.M.*

(From the Clinical Pathology Laboratory, the Radcliffe Infirmary, Oxford) (1954)

	TABLE	I	
	With Parasitaemia	Without Parasitaemia	Total
Sicklers Non-sicklers	 12 (27·9%) 113 (45·7%)	31 (72·1%) 134 (53·3%)	43 247



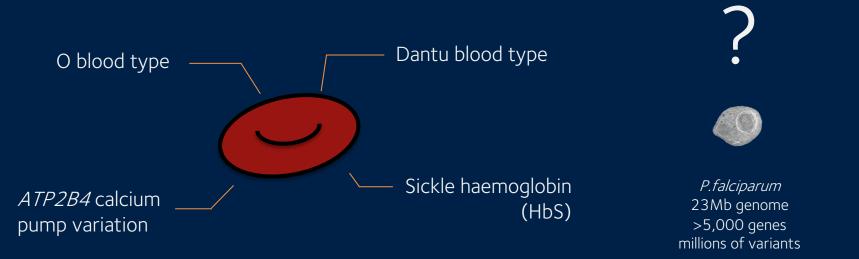
 Carrying one copy of HbS is thought to have about a ten-fold protective effect


Taylor et al Lancet Infect. Dis 2012

Protection against infection... and natural selection

Malaria endemicity

Frequency of HbS


Piel et al Nature Communications (2010)

O blood type frequency ~ 50% RR ~ 0.75 (recessive) - Dantu blood type frequency ~ 0-10% RR ~ 0.6 (additive)

ATP2B4 calcium pump variation frequency ~ 50% RR ~ 0.66 (recessive) Sickle haemoglobin (HbS) *Frequency* ~ 2-20% *RR* ~ 0.1-0.2 (heterozygote)

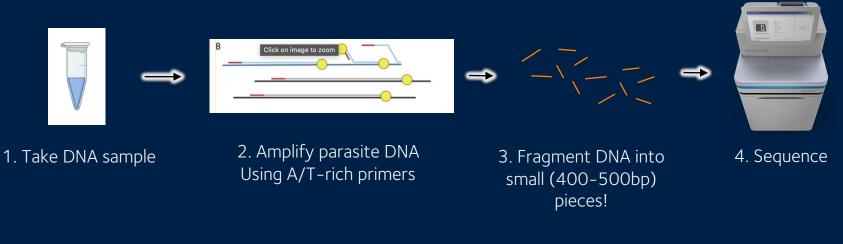
Allison Br Med. J. (1954)

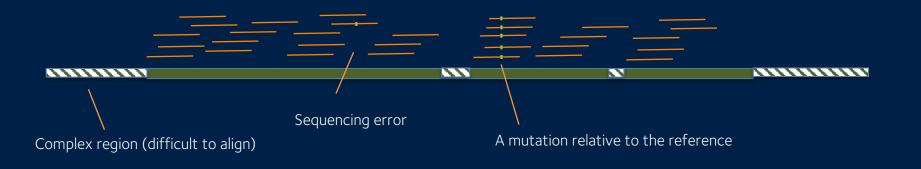
Estimates from our multi-population GWAS of severe malaria susceptibility - MalariaGEN Nature Communications 2019

Have parasite populations adapted? (And is this detectable in current populations?)

Searching for host-parasite genetic interactions

Band et al Nature 2021 doi.org/10.1038/s41586-021-04288-3

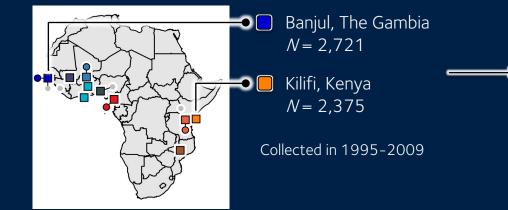


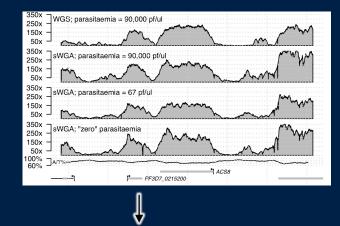

Plan of attack:

- Take DNA samples from a large set of severe malaria cases. (These were previously collected and contain both human and parasite DNA)
- 2. Amplify and sequence the parasite DNA.
- 3. Test for association between human and parasite genetic variants

Quick genome sequencing cheat sheet

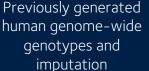
5. Computationally align reads back to reference genome




Investigating human-parasite genetic interaction in severe malaria cases

1. Sequence the *P.falciparum* genome

in severe malaria cases from our previously published human GWAS



Variant calling and quality control

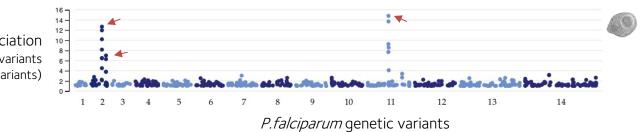
Overlap with human data N = 3,346 samples

2. Test for association pairwise between human and *Pf* variants using a simple logistic regression framework:

 $g_{Pf} \sim g_{\text{human}} + \text{country}$

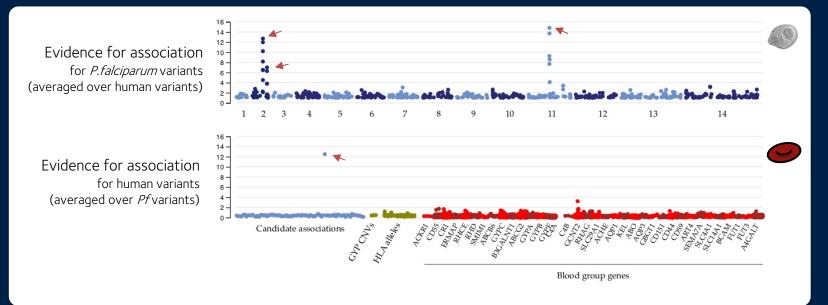
Software at: www.well.ox.ac.uk/~gav/hptest

Focus on candidates:

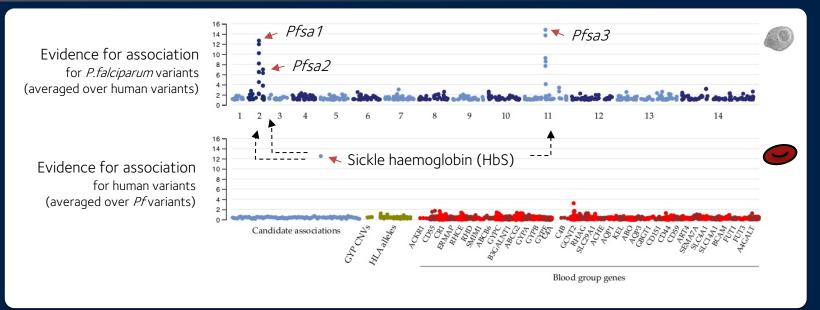

- Known protective mutations
- Further putative associations
- Blood group gene variants
- HLA alleles

Focus on 'easy' parts:

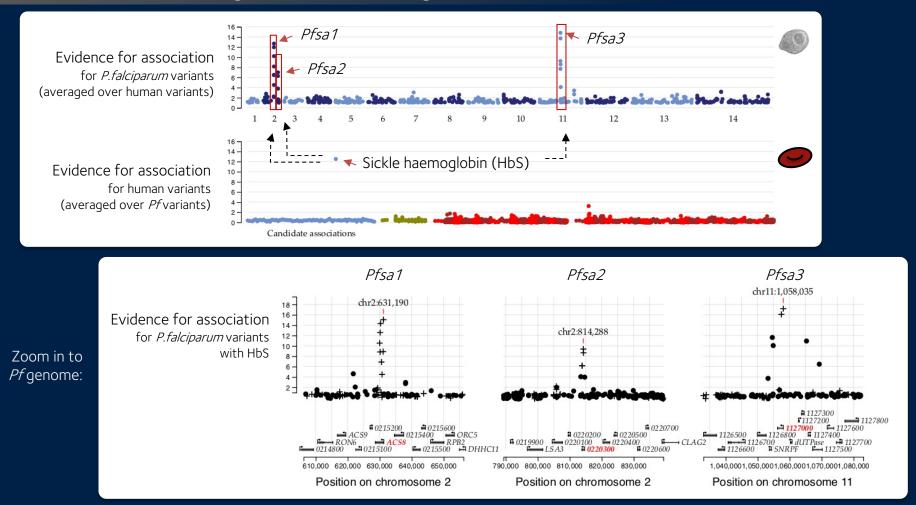
- Biallelic variants in core genome
- Seen in at least 25 infections across the sample.
- 51,552 variants in total

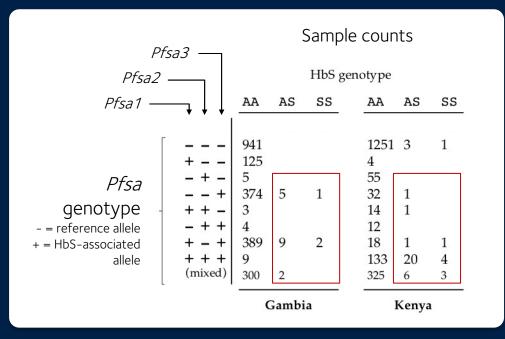

(...excludes multiallelics and complex regions)

Three regions of the Pf genome are associated...

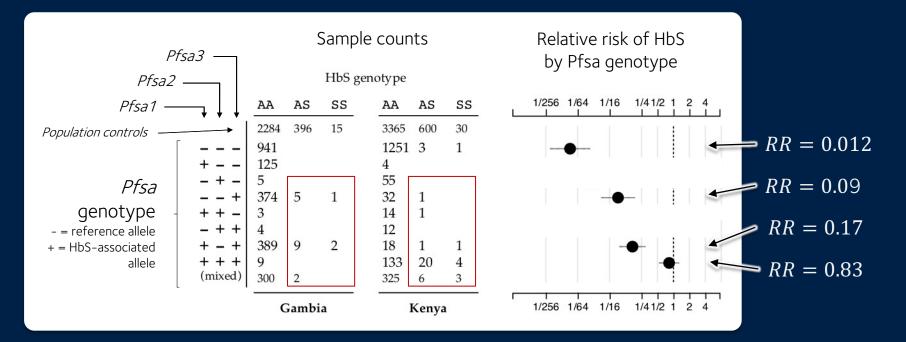


Evidence for association for *P.falciparum* variants (averaged over human variants)


Three regions of the Pf genome are associated with...


Three regions of the Pf genome are associated with HbS

Three regions of the Pf genome are associated with HbS


The protective effect of HbS varies with *Pfsa* genotype

N = 4,071 severe malaria cases

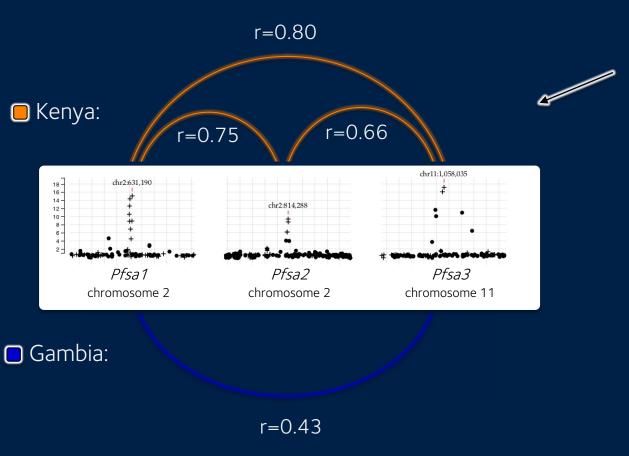
45 of 49 severe infections of individuals with HbS genotypes were with *Pfsa+* parasites

The protective effect of HbS varies with *Pfsa* genotype

45 of 49 severe infections of individuals with HbS genotypes were with *Pfsa+* parasites Parasite population genetics

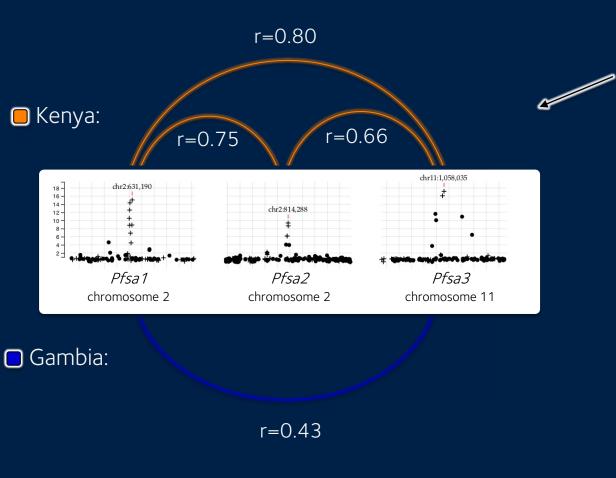
Pfsa frequencies vary widely within and between populations

20-43 (aut	
ORIGINAL ARTICLE Describing the current status of <i>Plasmodium falciparum</i> population structure and drug resistance within mainland Tanzania using molecular inversion probes	Pfsa1+ frequency chr2:631,190 T>A 0.3- 0.2- 0.1- 0.0-
ARTICLE Mysel/dollar/ansates/account of Plasmodium falciparum in the DRC	Pfsa2+ frequency chr2:814,288 C>T 0.3 - 0.2 - 0.1 - 0.0
DRC - Verity et al Nat. Comm 2020 Wellcome Open Research Wellcome Open Research RESEARCH ARTICLE	Pfsa3 + frequency chr11:1,058,035 T>A 0.3 0.2 0.1 0.0 0.5 0.5 0.4 0.3 0.2 0.1 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
An open dataset of <i>Plasmodium falciparum</i> genome variation in 7,000 worldwide samples	Parting and
MalariaGEN Pf6 Wellcome Open Research 2021	African pops non-African pops


Wel RESE/ An in

Pfsa frequencies vary widely within and between populations

DOI: 10.1111/mec.15705	0.7 ¬
ORIGINAL ARTICLE	0.6 - DR Congo
Describing the current status of <i>Plasmodium falciparum</i> population structure and drug resistance within mainland Tanzania using molecular inversion probes	Pfsa1+ frequency 0.4 - chr2:631,190 T>A 0.3 - 0.2 - 0.1 - Malawi
Tanzania - Moser et al,Molecular Ecology 2020	0.0 - DR Congo
ARTICLE OPEN The impact of antimalarial resistance on the genetic structure of <i>Plasmodium falciparum</i>	Pfsa2+ frequency chr2:814,288 C>T 0.3 0.2 0.1 0.0 Malawi • • • •
in the DRC DRC - Verity et al Nat. Comm 2020	Pfsa3+ frequency $chr11:1,058,035 T>A$
Wellcome Open Research Wellcome Open Research 2021, 642 Last updated: 29 MAR 2021 Check for updates Research ArtificLe An open dataset of <i>Plasmodium falciparum</i> genome variation in 7,000 worldwide samples	
	HbS frequency
MalariaGEN Pf6 Wellcome Open Research 2021	r
	(Malaria Atlas Project - Diel et al Lancet 20

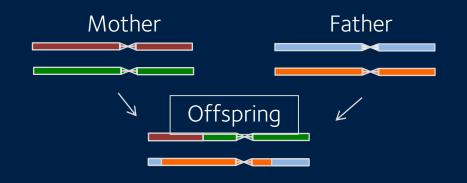

(Malaria Atlas Project – Piel et al Lancet 2013)

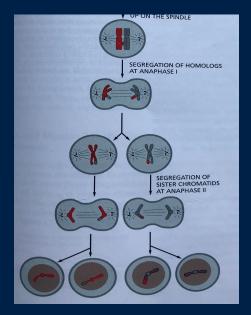
The *Pfsa* alleles are in strong linkage disequilibrium i.e. they co-occur

Correlation between *Pfsa+* alleles in severe malaria cases... After excluding HbS individuals

The *Pfsa* alleles are in strong linkage disequilibrium i.e. they co-occur

Correlation between *Pfsa+* alleles in severe malaria cases... After excluding HbS individuals

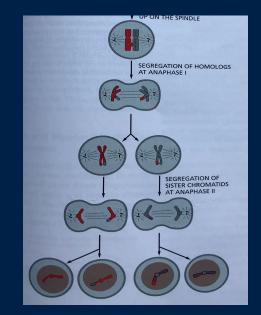

...or in milder infections:


*Pfsa1+*vs *Pfsa3+*

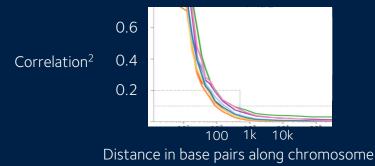
Country	N	r
Gambia	169	0.20
Guinea	133	0.79
Mali	379	0.84
Ghana	807	0.86
Cameroon	174	0.52
Congo	241	0.64
Malawi	239	0.79
Tanzania	282	0.59
Kenya	89	0.71

MalariaGEN Pf6

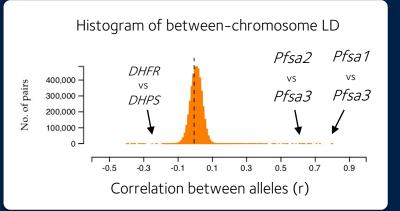
Meiosis (germline cell division)


Random assortment of chromosomes and chromosome segments

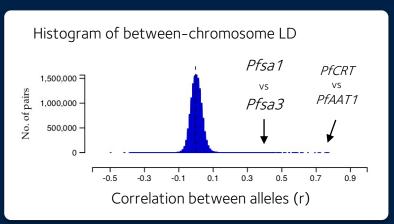
Parasites are haploid (one genome copy) and replicate clonally


Parasites fuse and undergo meiosis

The *Pfsa* alleles are in strong linkage disequilibrium i.e. they co-occur



Parasites undergo sexual reproduction (meiosis) in mosquitos


This breaks down correlations over short genetic distances in the genome.

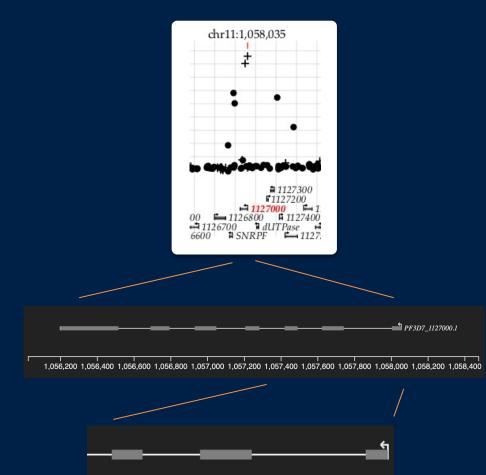
🔲 Kenya:

🗖 Gambia:

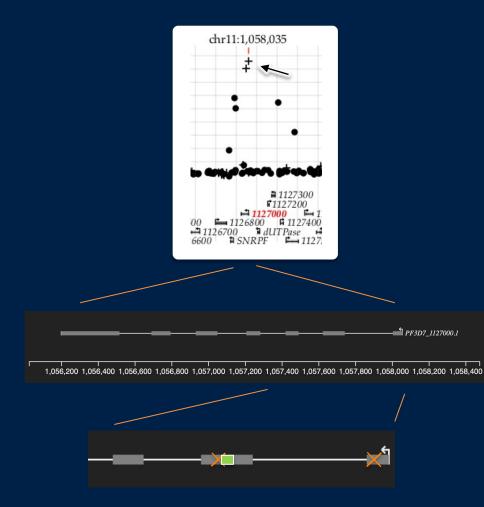
Hypothesis

• *Pfsa*-carrying parasites are able to infect and cause disease in HbS-carrying individuals

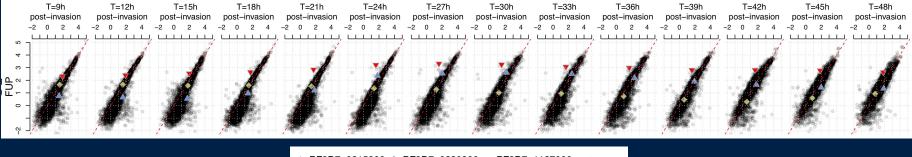
• They are presumably +vely selected in individuals carrying HbS.


• Yet they have not been driven to 100% in any population

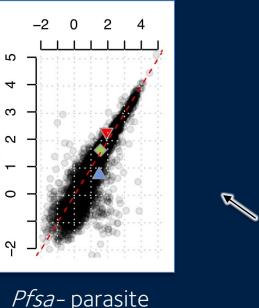

• It is possible that *epistasis* (fitness interaction between the three loci) is one of the factors contributing to this.


Towards understanding biological function

Puzzles and questions



Hypothesis: the Pfsa+ mutations affect export of the protein to the host cell (likely increasing the degree of export).

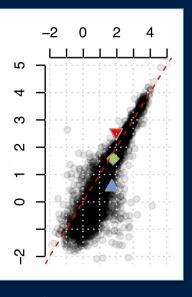


PF3D7_0215300 A PF3D7_0220300 V PF3D7_1127000 other genes

Hypothesis: the *Pfsa+* mutations increase expression of the1127000 gene (and presumably the corresponding protein)

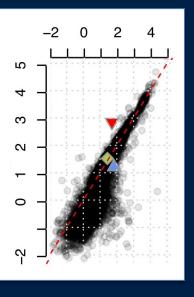
Parasite gene expression (RNA levels)

sickle-associated (*Pfsa+*) parasite

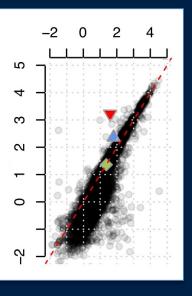


Hours post-invasion

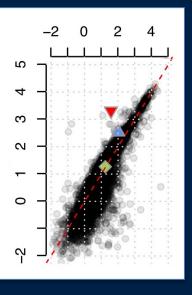
PF3D7_1127000 • other genes


T=9

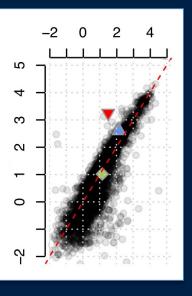
The parasite takes about 48 hours to replicate within red cells (then they burst and the parasites reinvade). What does gene expression look like across this cycle?



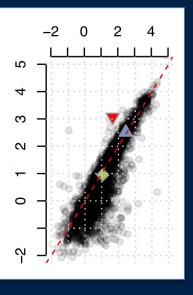
▼ PF3D7_1127000 • other genes


T=21

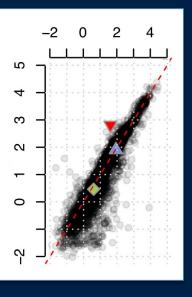
▼ PF3D7_1127000 • other genes


T=24 Hours post-invasion

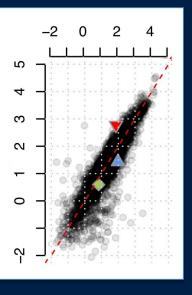
▼ PF3D7_1127000 • other genes


T=27 Hours post-invasion

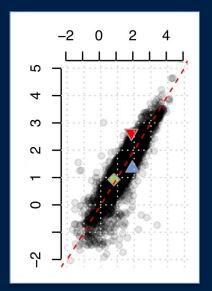
▼ PF3D7_1127000 • other genes



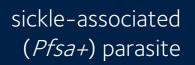
▼ PF3D7_1127000 • other genes

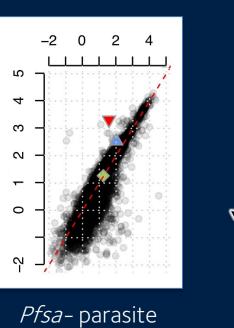

T=33 Hours post-invasion

▼ PF3D7_1127000 • other genes

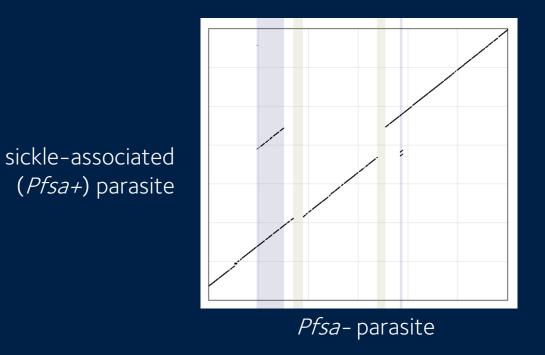


▼ PF3D7_1127000 • other genes


▼ PF3D7_1127000 • other genes



R


▼ PF3D7_1127000 • other genes

Hypothesis: the *Pfsa+* mutations increase expression of the1127000 gene at trophozoite stage (blood feeding / growth stage). And presumably the corresponding protein.

The Pfsa3 locus contains genome structural variation. Does that influence the expression?

Conclusions

- Studying malaria genetics can lead to new insights into infection biology
- There seem to be parasite mutations that can overcome the protective effects of sickle haemoglobin
- We do not know the biology of these variants yet, but have some clues.
- The variants have very unusual population genetic properties that tell a tale of natural selection and possibly epistasis.

(and genetics is fun!)

KEMRI Wellcome Trust

Dominic Kwiatkowski

MRC The Gambia @ LSHTM

Muminatou Jallow Fatoumatta Sisay-Joof Kalifa A. Bojang David J. Conway Giorgio Sirugo Umberto d'Alessandro

Wellcome Sanger Institute

Thuy Nguyen Sonia M. Goncalves Roberto Amato Cristina V. Ariani Jim Stalker

Richard D Pearson Eleanor Drurv Dominic P. Kwiatkowski

I effler

KEMRI-Wellcome, Kilifi, Kenya Carolyne M. Ndila Alexandar W. Macharia Norbert Peshu Kevin Marsh

Thomas N. Williams

Duke University

Muminatou

Jallow

Steve M. Taylor Joseph P. Saeelens

USTTB Mali: Mahamadou Diakite

Tom Williams

University of Oxford Kirk A. Rockett Anna E. Jeffrevs Christina Hubbart Kate Rowlands Dominic P. Kwiatkowski

Thanks also: Annie Forster

Jia-Yuan Zhang Andre Python

www.malariagen.net

"We thank the patients and staff at the Paediatric Department of the Royal Victoria Hospital in Banjul, Gambia, and at Kilifi County Hospital and the KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya for their help with this study."

Publication at: doi.org/10.1038/s41586-021-04288-3

Kirk

Rockett

BILL& MELINDA GATES foundation

