The HV31 / Omniome projects

Gavin Band

Long Read Sequencing Networking Event NHS Central and South Genomic Medicine Service Alliance 20th July 2022

John Todd

Julian Knight

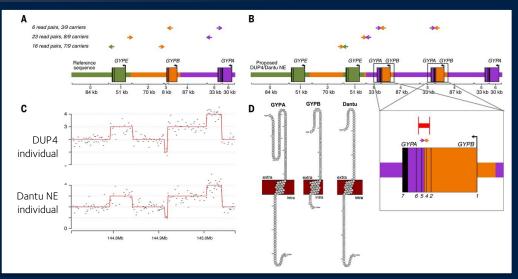
David Buck / OGC

Andy Brown

Tony Cutler

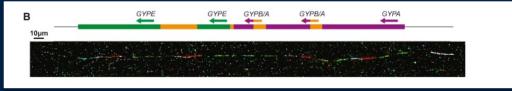
Jia-Yuan Zhang

Hannah Roberts David Flores Justin Whalley Rachael Bashford-Rogers David Smith Amy Trebes

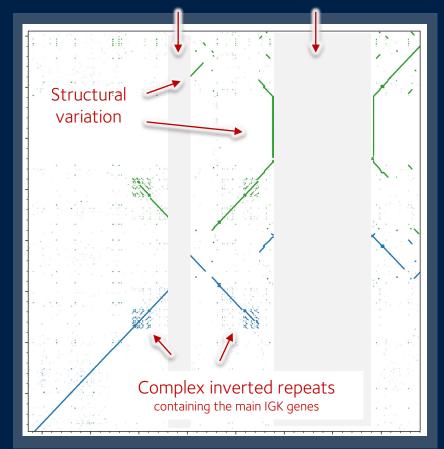


Helen Lockstone

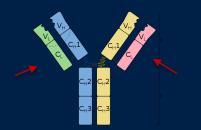
Olga Mielczarek Barbara Xella (WIMM) Karen Oliver (Sanger) Connor Davidson Paolo Piazza + others...


Motivation: linking genome structural variation to function and disease

- The role of genome structural variation in disease remains poorly understood.
- Often a feature of complex genomic regions such as segmental duplications.


Leffler et al Science 2017

• Example: the Dantu blood group variant protects against malaria


Algady et al AJHG 2018

Build 38 assembly gaps (missing sequence)

Each point is a 50basepair segment (50*-mer*) shared identically between the two genomes

Example: Immunoglobulin **kappa** chain locus chromosome 2 Build 38 vs HV31 comparison

What is it about these regions?

- Targets of longstanding selection pressures due to pathogens and autoimmunity
- High genetic diversity

• Complex genome structure including multilevel repeats, mediating structural variation.

REVIEW

The immunoglobulin heavy chain locus: genetic variation, missing data, and implications for human disease

Watson and Breden 2012

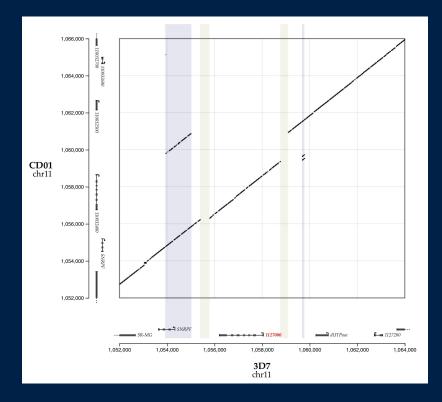
RESEARCH ARTICLE

HUMAN GENOMICS The complete sequence of a human genome

Nurk et al Science 2022

A Novel Framework for Characterizing Genomic Haplotype Diversity in the Human Immunoglobulin Heavy Chain Locus

Rodriguez et al Frontiers in immunology 2020


Characterization of Extensive Diversity In Immunoglobulin Light Chain Variable Germline Genes Across Biomedically Important Mouse Strains

Justin T. Kos,
 Yana Safonova, Kaitlyn M. Shields, Catherine A. Silver,
 William D. Lees, Andrew M. Collins,
 Corey T. Watson
 doi: https://doi.org/10.1101/2022.05.01.489089

Kos et al 2022

Genomic variation in these regions is poorly understood

Pathogen genomes are not immune to complex variation

A structural variant of the *P.falciparum* genome involved in human-malaria interaction

A resource of genomic data on a single healthy individual – HV31

Evaluate the use of 3rd-generation sequencing technologies to map structural variation in complex biomedically important regions.

Link to genome function.

Using a single healthy European volunteer, codenamed HV31

A resource of genomic data on a single healthy volunteer – HV31

Short read genomic sequencing:

- Illumina Novaseq (~40x)
- MGI (~150x)

Long read genomic sequencing:

- PacBio continuous long reads (~35x)
- Nanopore reads (~63x)
- PacBio 'HiFi' reads (~12x)

Linked-read genomic sequencing:

10X linked reads (~40x)

Data on genome function:

 RNA-seq, ATAC-seq, ChIP-seq: CD4+ "helper T cell" CD8+ "killer T cell" CD19+ B cells CD14+ monocytes

+ more data coming on newer ONT and PacBio versions.

Aim: evaluate use of these technologies, in particular for mapping structural variation.

Genome optical mapping:

• Bionano (~150x coverage by imaged fragments)

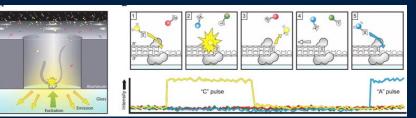
Data available through EGA (EGAS00001005046)

Image credit: By Dr Graham Beards - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20521950

Quick survey of technologies – Illumina

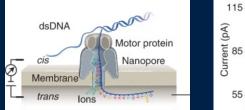
Illumina short-read sequencing makes essential use of amplification of short fragments

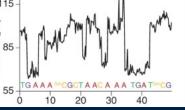
They are sequenced in "lockstep" by polymerase incorporation of labelled bases


Quality drops off as sequencing proceeds along the read due to molecules getting out of sync

=> Short reads (e.g. 150bp paired end)

Quick survey of technologies – Long reads

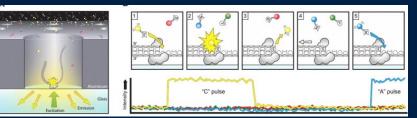

PacBio continuous long read (CLR) Up to 100s of kb Figure: Rhoads and Fai Au 2015



Pacbio: single DNA molecules are trapped in individual wells with polymerase, which incorporates fluorescent bases.

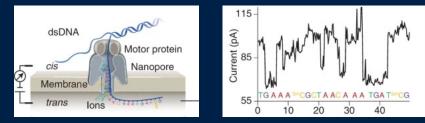
Nanopore (ONT) Up to 100s of kb - or maybe even Mb

Figure: Wang et al 2021



ONT: single DNA molecules are drawn through small pores. Ionic current flow is measured.

Quick survey of technologies – Long reads


PacBio continuous long read (CLR) Up to 100s of kb Figure: Rhoads and Fai Au 2015

Pacbio: single DNA molecules are trapped in individual wells with polymerase, which incorporates fluorescent bases.

Nanopore (ONT) Up to 100s of kb - or maybe even Mb

Figure: Wang et al 2021

ONT: single DNA molecules are drawn through small pores. Ionic current flow is measured.

Pros and cons:

- + Long (100s of kb) sequencing lengths
- + Use of unamplified DNA

+ Software improvements might lead to new inference on existing data

- High error rates
- Poor at calling homopolymer length

Quick survey of technologies – Long reads

ø

trans

PacBio continuous long read (CLR) Up to 100s of kb Figure: Rhoads and Fai Au 2015

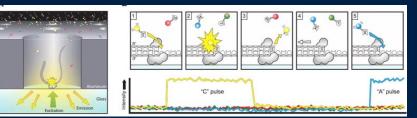
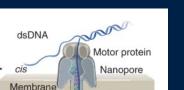
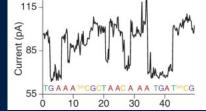
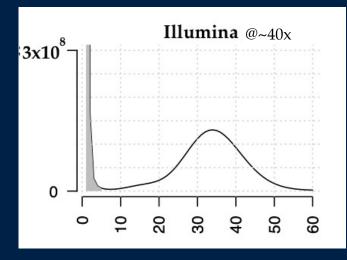




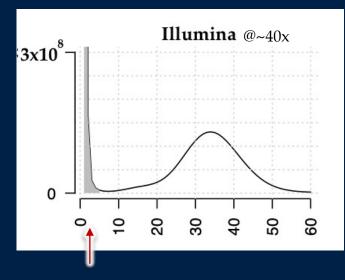
Figure: Wang et al 2021

Pacbio: single DNA molecules are trapped in individual wells with polymerase, which incorporates fluorescent bases.

Nanopore (ONT) Up to 100s of kb - or maybe even Mb


ONT: single DNA molecules are drawn through small pores. Ionic current flow is measured.

PacBio – 'HiFi' / circular consensus sequencing Size-selected to (say) 10kb

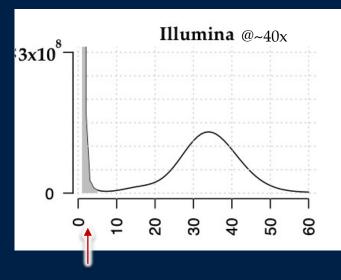

Consensus 'HiFi' read generated in software from ~10-15 fold coverage of same molecule

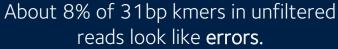
Kmer frequency histogram

Count occurences of 31 bp kmers in reads. Those with low counts are probably errors.

"What proportion of sequenced kmers are correct?"

Kmer frequency histogram

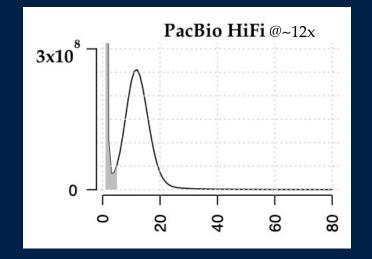

Count occurences of 31 bp kmers in reads. Those with low counts are probably errors.


About 8% of 31bp kmers in unfiltered reads look like **errors**.

Base error rate ~ 0.082/31 = 0.26%

i.e. ~ one error in 400bp

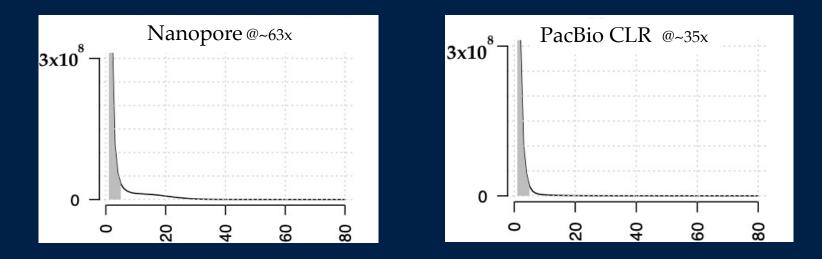
150bp PE



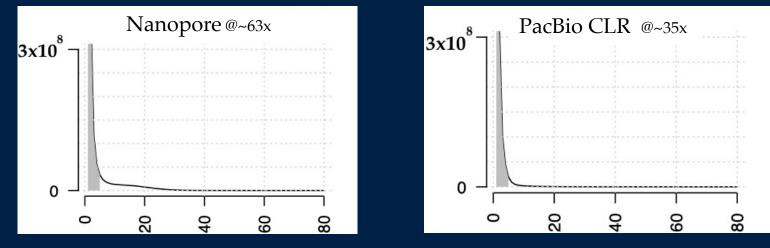
Base error rate ~ 0.082/31 = 0.26%

i.e. ~ one error in 400bp

150bp PE



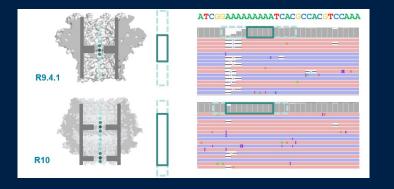
Also about 8% of 31bp kmers in unfiltered reads look like **errors**.


Base error rate ~ 0.078/4 = 0.25%

i.e. ~ one error in 400bp

10kb size-selected

In R9 nanopore or Pacbio CLR, most kmers contain errors

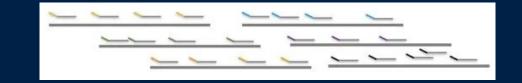


	count	type	contig_sequence	read_sequence	left_flank	right_flank	RepeatTract1	RepeatTract1_length
	<int></int>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>
1	43	D	Т		TAA	TTT	Т	6
2	41	D	С		TTT	ССТ	С	3
3	40	D	С		ССТ	ссс	С	4
4	39	D	С		СТТ	ССТ	с	3
5	38	D	С		сст	ССТ	с	3

	count	type	contig	_seque	ence	read_s	equence	left_flank	right_flank	RepeatTract1	RepeatTract1_length
	<int></int>	<chr></chr>	<chr></chr>			<chr></chr>		<chr></chr>	<chr></chr>	<chr></chr>	<int></int>
1	22	X	С			Т		TTT	TTT	NA	NA
2	20	Х	С			Т		AGG	TGG	NA	NA
3	18	X	С			T		TGG	GAA	NA	NA
4	18	Х	G			Α		GCT	GGA	G	3

Most errors are in homopolymer repeats

Technology improvements may change this picture


We are working to evaluate new iterations of the Oxford Nanopore and Pacbio technologies. Chemistry and software improvements may change this picture.

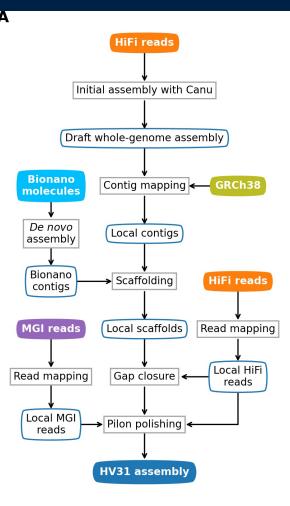
In regions where reads can be effectively aligned the errors can often be dealt with by consensus accuracy.

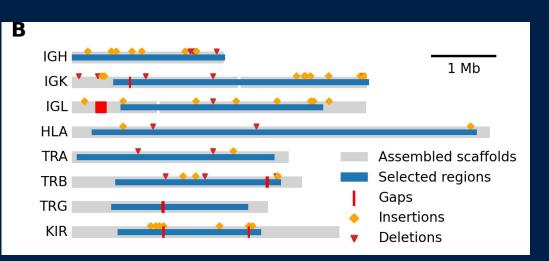
What about complex regions?

(Aside – Linked reads and optical mapping)

Linked reads = short-read sequencing, with fragments barcoded according to the long (~100kb) molecule they originate from

Optical mapping: individual long (100s of kb) molecules drawn through channels, with imaging of a specific 6bp motif.

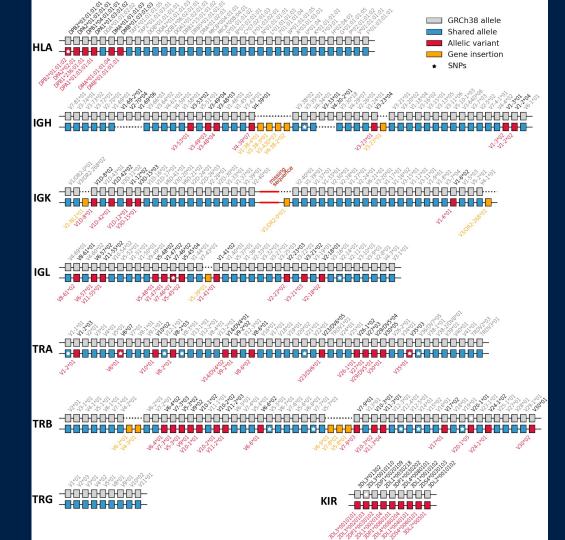


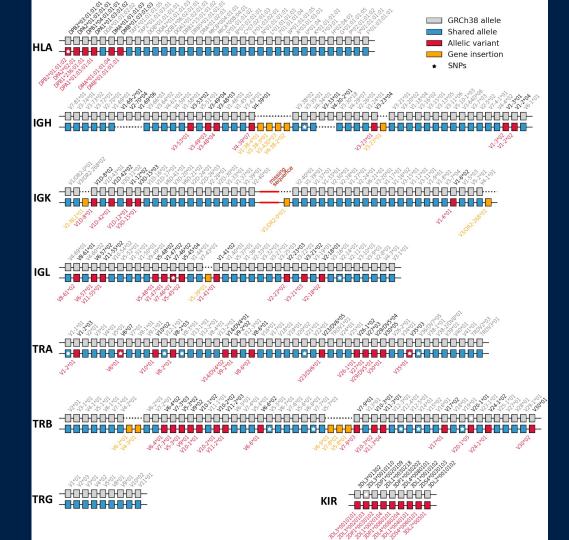

We used project data to attempt to de novo assemble eight regions that encode important components of the immune system:

Human Leukocyte Antigen
(HLA)Immunoglobulin heavy and light chains
(IGH, IGK, IGL)Killer cell immunoglobulin-like
receptors (KIRs)T cell receptors (TRG, TRA/D, TRB)

We based the assembly around the PacBio HiFi data using other data to further improve and validate the assembly.

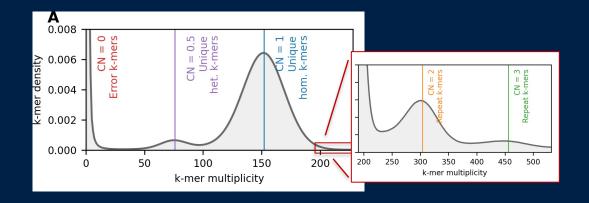
We then assessed heterozygous and homozygous structural variation relative to the genome reference assembly.




Most regions assembled in one contig (do still have contig breaks in IGK and IGKL).

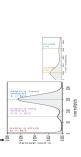
Estimated error rate < 1 in 10kb - *provided* you believe we got the structure right.

Zhang et al PLoS Comp Biol 2021


Large structural rearrangements seen in this single individual across most regions.

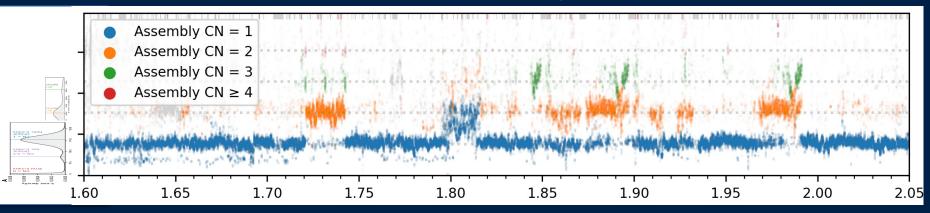
Large structural rearrangements seen in this single individual across most regions.

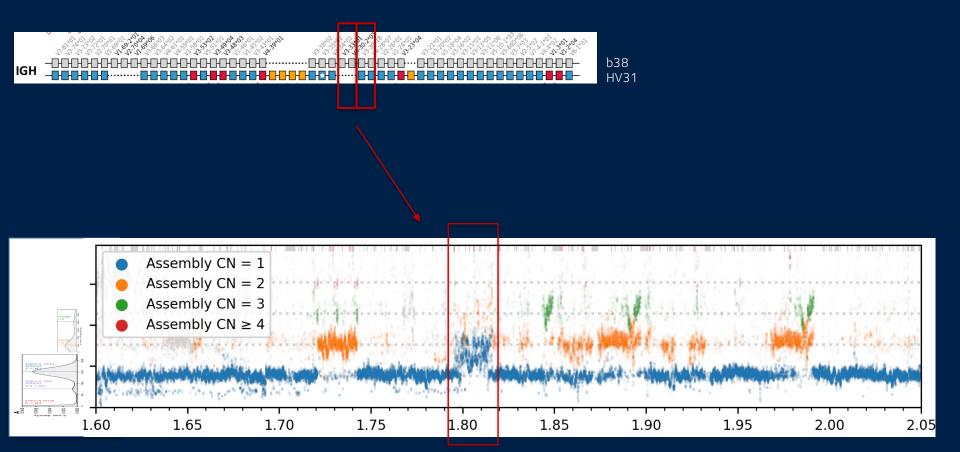
Warning: genome is diploid but assembly isn't!


How do we know our structure is right?

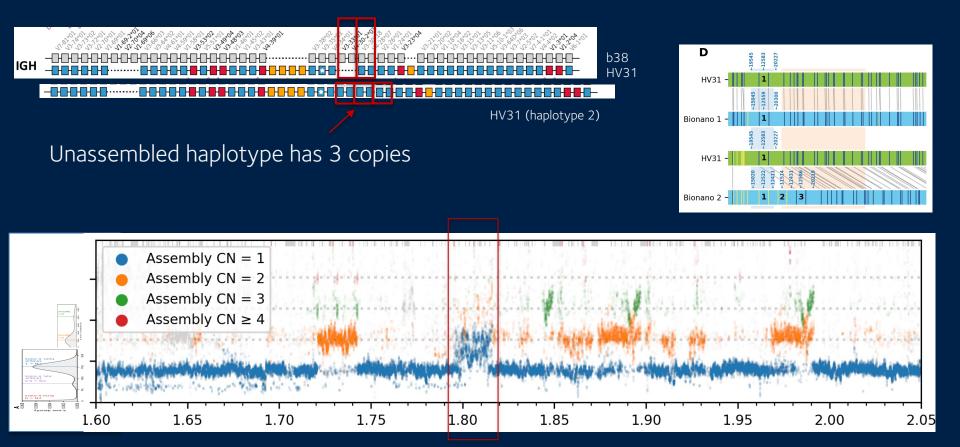
Kmer histogram from short-read data as on earlier slide

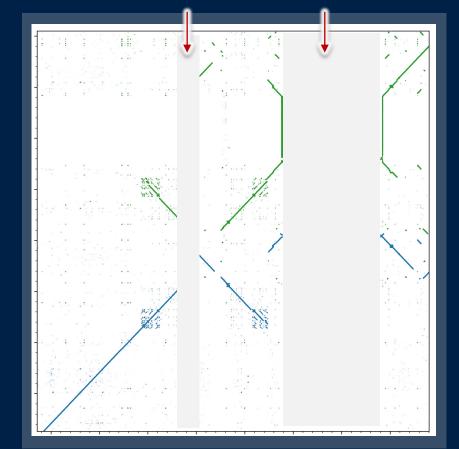
Idea: compare assembly kmer multiplicity to kmer counts from all the short-read data (~150x kmer coverage) as validation.


Validating the assembly structure


Idea: compare assembly kmer multiplicity to kmer counts from all the short-read data (~150x kmer coverage) as validation.

Validating the assembly structure


Shown below for part of IGH region

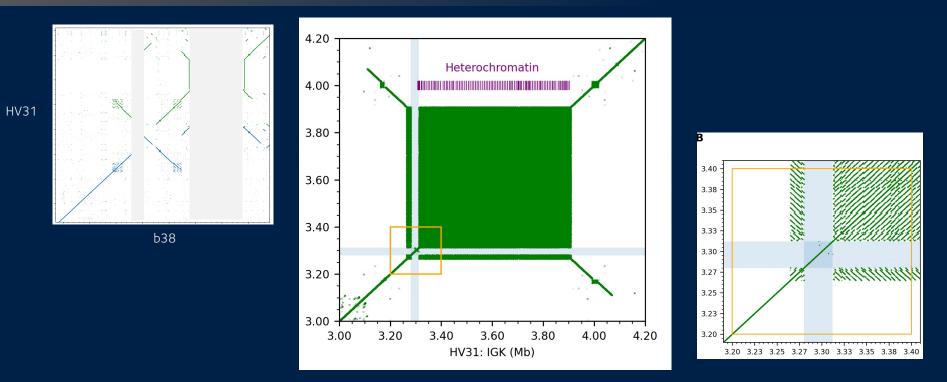

Validating the assembly structure: a heterozygous SV

Validating the assembly structure: a heterozygous SV

Build 38 assembly gaps (missing sequence)

Each point is a 50basepair segment (50*-mer*) shared identically between the two genomes

Example:


chromosome 2

Immunoglobulin

kappa chain locus

Build 38 vs HV31 comparison

Filling the gaps – IGK region

~650kb gap is filled with satellite repeats – but also unique sequence!

"115 imperfect tandem copies of 6 kb repeat units containing a 22bp signature from HSat2B family"

HV31 as a resource

Short reads:

• Illumina and CoolMPS, to ~200x

Long reads:

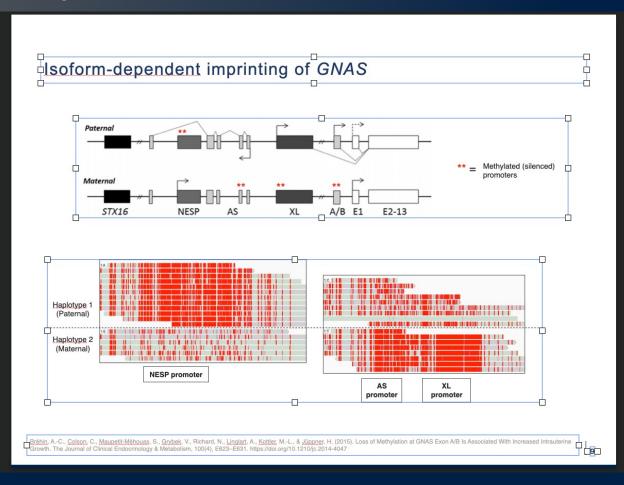
- PacBio continuous long reads (~35x)
- Nanopore reads (~63x)
- PacBio 'HiFi' reads (~12x)
- Coming soon! New ONT and Pacbio data better accuracy + methylation!

Linked reads and optical mapping:

- Bionano optical mapping (~150x coverage by imaged fragments)
- 10X linked reads (~40x)

Functional data

- ATAC-seq, ChIP-seq for histone modifications, RNA-seq in immune cell type
- Coming soon! Long-read transcripts.


• We are continuing to evaluate these technologies

• New iterations have better error rates and they call methylation

• Ongoing work to build the data into a joined-up resource, including functional data aligned to personal genomes.

• Remaining methodological issues around scaling up and resolving diploid sequence.

Pacbio methylation calls

John Todd

Julian Knight

David Buck / OGC

Andy Brown

Tony Cutler

Jia-Yuan Zhang

Hannah Roberts David Flores Justin Whalley Rachael Bashford-Rogers David Smith Amy Trebes

Helen Lockstone

Olga Mielczarek Barbara Xella (WIMM) Karen Oliver (Sanger) Connor Davidson Paolo Piazza + others...