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 Working with genetic data on a genomic scale requires powerful computer packages to be able to cope with the size of the data set and the complexity of the analysis. R (http://www.r-project.org/)   is freely available package which provides both a programming language (allowing you to write your own functions), inbuilt tools for doing basic statistical analysis and lots of packages or libraries written by others to allow you to do more specific tasks. Moreover, it provides excellent tools for visualizing both raw genetic data and subsequent analysis.

This practical aims to provide you with a broad introduction to R. It contains the sections:

Working with vectors

Working with matrices

Working with list 

Working with data frames

There are then sections on using R for statistics:

Tests for comparing means

Analysis of categorical data  

Linear regression Analysis

Finally there is a short practical looking at some genetic data from a case-control study.

As some of you will be more familiar with R and how it works you may move quickly through the early sections. Please do have a read as there is nearly always more R to be learnt!

In the examples below for you to work through, the R commands are indented and set in courier font.  You may copy these commands and then paste them into the R command interface.  Alternatively you can just type them in yourself.

If you require information about a function (for example what it does, or what arguments it takes), you can type (e.g. to get information about seq):

?seq

help(seq)

help.search("seq")

To set R preferences to open the help file in a Web Browser use:

options(help_type='html')

Comments are written in Ariel font, while the expected R output is prefixed by ‘Output:’   

             1. Working with Vectors 

A vector in R is defined as a single collection of objects. These objects may be numbers or characters. For example: 

The colon (:) is used to create sequences of integers. 

Generate a vector containing the numbers 1 to 10: 


1:10

Output:   12 3 4 5 6 7 8 9 10 

For more control, try using the function: seq 


seq(from = 1, to = 3, by = 0.25) 

Output:   1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

Sometimes the simplest way is just to use the c function. 


c(1,41,51,3) 

Output:   1 41 51 3 

Now let us define our own vector: 


x <-c(2, 7, 3, 9, 5, 6, 3, 1) 

How many elements are there in x? 


length(x) 

Output:   8 

What is the fourth element of x? 


x[4]

Output:   9 

We can extract more than one element of x at a time. 

This action is called subsetting. 

For example, to get the first, fourth and seventh elements of x: 


x[c(1, 4, 7)]

Output:   2 9 3 

The square brackets [] are the subset operator and the argument  (the bit in between the brackets) is a vector. If the argument  is a vector of numbers, then those elements of x are returned. 

The argument can also be a logical vector in which case the 

TRUE elements are returned. Say for a logical vector with 8 

elements where the first, fourth and seventh elements are TRUE. 


c(T, F, F, T, F, F, T, F) 

Output:   TRUE  FALSE  FALSE  TRUE  FALSE  FALSE  TRUE  FALSE

Now, applying this logical statement to extract elements in x:


x[c(T, F, F, T, F, F, T, F)]

Output:   2 9 3 

Notice that we get the same output as for x[c (1,4,7)]. 

Some useful ways for making logical vectors are with <, > and == 

For example: 


x>4 

Output:   FALSE  TRUE  FALSE  TRUE  TRUE  TRUE  FALSE  FALSE 


x<5 

Output:   TRUE  FALSE  TRUE  FALSE  FALSE  FALSE  TRUE  TRUE


x==9 

Output:   FALSE  FALSE  FALSE  TRUE  FALSE  FALSE  FALSE  FALSE


x!=4

Output:    TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We can then use these logical vectors to subset x


x[x > 4] 

Output:   7 9 5 6

These logical statements can be paired together with logical operators.

The OR operator is I, and returns TRUE if at least one of its arguments is true.

The AND operator is &, and returns TRUE if  both of its arguments are TRUE. 


T | F 

Output:   TRUE 


T & F

Output:   FALSE

T & T

Output:   TRUE

The AND and OR operators work element-wise for logical vectors. 


x > 2 & x < 7 #which elements of x are between 2 and 7 

Output:   FALSE  FALSE  TRUE  FALSE  TRUE  TRUE  TRUE  FALSE


x < 3 | x > 6 #which elements of x are less than 3 or greater than 6 

Output:   TRUE  TRUE  FALSE  TRUE  FALSE  FALSE  FALSE  TRUE 

If we want the elements of x that are either less than 3 or greater than 6: 


x[x < 3 | x > 6]

Output:   2 7 9 1

Another useful feature when subsetting is that elements can be subset multiple times. 


x[c(1,1,1,2,3,4)] 

Output:   2 2 2 7 3 9

Thus, the new vector contains the first element of x 3 times, followed by the second, third and fourth elements. 

Example: the built-in vectors letters and LETTERS contain the letters of the alphabet. Use subsetting to spell Fred’s name: 


c(letters, LETTERS) [c(37, 5, 18, 18, 9, 14)] 

Output:   “K” “e” “r” “r” “i” “n”


c(letters, LETTERS) [c(32, 18, 5, 4)] 

To obtain an output “F” “r” “e” “d”

Notice that the alphabets come out disjointed, since they are recognized as each individual element of a vector. You can collapse the letters into one word with the paste function. 


paste(c(letters, LETTERS) [c(32, 18, 5, 4) ], collapse = "") 

Output:   "Fred"

To see how the vector is organised type:


c(letters, LETTERS)

 what happens if you use?

c(LETTERS , letters)

     2. Working with Matrices

Matrices are basically just two dimensional vectors.  There are several ways to create a matrix. 

First we need another vector of the same length. 


y <- c(4, 2, 3, 6,5, 8, 5, 2) 

Create a matrix where the first column is x and the second column is y:


cbind(x, y) 

Output:        x y

[1,] 2 4

[2,] 7 2

[3,] 3 3

[4,] 9 6

[5,] 5 5

[6,] 6 8

[7,] 3 5

[8,] 1 2

Create a matrix where the first row is x and the second row is y: 


rbind(x, y) 

Output:    
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

x    2    7    3    9    5    6    3    1

y    4    2    3    6    5    8    5    2

Also useful is the matrix function. Use it to create a matrix of the numbers 1 to 12 with 3 rows and 4 columns.


matrix (1:12, nr = 3, nc = 4) 

Output:  [,1] [,2] [,3] [,4]

[1,]       1    4    7   10

[2,]       2    5    8   11

[3,]       3    6    9   12

To make the numbers go across the rows, use the arguments byrow = T. 

Also, save this matrix as m. 


m <-matrix(1:12, nr = 3, nc = 4, byrow = T) 


m

Output:      [,1] [,2] [,3] [,4]
        [1,]    1     2    3    4
        [2,]    5     6    7    8
        [3,]    9   10    11    12

How big is m? 


dim (m)

Output:   3 4 

Subsetting a matrix is a lot like subsetting a vector -you just need two arguments. A blank argument is interpreted as the whole row or column. Get the first two rows of m: 


m[1:2, ]

Output:   
  [,1]  [,2]  [,3]  [,4]  
         [1,]     1    2     3    4 
         [2,]     5    6     7    8 

Get the first two columns of m: 


m[, 1:2] 

Output:  
    [,1]  [,2]
        [1,]     1    2
        [2,]     5    6
        [3,]     9    10

Notice that the key lies in where the comma is.  Elements before the comma will subset the rows, elements after the comma will subset the columns.  If you ask for only a single column or row, then it gets returned as a vector. 


m[1, ]

 Output:   1 2 3 4 

 You can subset a matrix with a matrix argument. The argument should be a matrix with two columns -each row specifies a cell in the target matrix. 

 To access a 2-dimension matrix (i.e. rows and columns) one needs to supply a x-y coordinate.
 The following variable will be created with 3  x-y cordinates that can then be used to find data in the 'm' matrix variable.

my.subset <- cbind(3:1, 1:3) 

my.subset 

Output:      [,1] [,2]
        [1,]    3    1
        [2,]    2    2
        [3,]    1    3


m[my.subset] 

Output:   9 6 3 

You can also assign to a subset. Replace the elements in my.subset by -1: 


m[my.subset] <- -1 


m 

Output:      [,1] [,2] [,3] [,4]
        [1,]    1    2   -1    4
        [2,]    5   -1    7    8
        [3,]   -1   10   11   12

 Drop the fourth column of m to make it a square matrix: 
  m  <- m[, -4]
  m 

 Output:       [,1] [,2] [,3]
         [1,]    1    2   -1
         [2,]    5   -1    7
         [3,]   -1   10   11

Use the diag function to extract the main diagonal from m: 

diag(m) 

Output:   1  -1  11 

Use the diag function to assign 1 to the main diagonal of m: 


diag (m) <- 1 


m 

Output:    [,1] [,2] [,3]
      [1,]    1    2   -1
      [2,]    5    1    7
      [3,]   -1   10    1

Example: make a square matrix from 1:16 and replace the super-diagonal elements with -1. 


m  <- matrix(1:16, nr = 4, nc = 4) 


m

Output:     [,1] [,2] [,3] [,4]
        [1,]    1    5    9   13
        [2,]    2    6   10   14
        [3,]    3    7   11   15
        [4,]    4    8   12   16


my.subset <-cbind(1:3, 2:4) 


m[my.subset] <-  -1 


m

Output:       [,1] [,2] [,3] [,4]
           [1,]    1   -1    9   13
           [2,]    2    6   -1   14
           [3,]    3    7   11   -1
           [4,]    4    8   12   16

          3. Working with Lists 

A list is like a vector except that the elements do not need to be of the same type. Lists are created using the list function.  The syntax is for each element name = value. 


my.list <- list(vector = c(1,2,3), my.name="Barney Rubble",TorF = T) 


my.list 

OUTPUT:


$vector

[1] 1 2 3


$my.name

[1] "Barney Rubble"


$TorF

[1] TRUE

The elements of a list are accessed by either their name or their position in the list. Note, for lists the extraction operator is double square brackets: [[ ]]. For accessing named elements, the $ operator can be used as well. 


my.list[["my.name"]]

Output:   "Barney Rubble" 


my.list$vector 

Output:   1 2 3 


my.list[[3]]

Output:   TRUE 

To append a new element to the list, just give it a new name and assign something. 


my.list$new.elem <-"something" 


my.list 

OUTPUT:

$my.name 
[1] "Barney Rubble" 


$TorF 

[1] TRUE 


$new.elem 

[1] "something" 
To remove an element, just assign the value NULL to it. 


my.list$TorF <-NULL 


my.list

OUTPUT:

$vector 

[1]  1 2 3 


$my.name 

[1]  "Barney Rubble" 


$new.elem

[1]   "something"

Use the names function to see the names of the elements in the list. 


names(my.list) 

Output:   "vector"       "my.name"      "new.elem" 

Example: lots of things are lists, including fitted model objects, which we will see later. 

              4. Working with Data Frames 
A data frame is a cross between a list and a matrix. The elements of the list are the columns of the data frame. If you subset a data frame as if it was a list, you are operating on the columns. 

You can also subset a data frame as if it was a matrix. Let's look at an example data frame which we will see later. 

First we need to load 2  libraries


library(car)


library(MASS) 

Now we can inspect some of the test data that comes with the library


Cars93[1:5,] # Just looking at the first 5 rows 

Output:   

Manufacturer  Model  Type  Min.Price  Price  Max.Price  MPG.city

1    Acura    Integra  Small   12.9     15.9    18.8       25 

2    Acura    Legend   Midsize 29.2     33.9    38.7       18 

3    Audi       90     Compact 25.9     29.1    32.3       20 

4    Audi      100     Midsize 30.8     37.7    44.6       19 

5    BMW       535i    Midsize 23.7     30.0    36.2       22 

MPG.highway  AirBags  DriveTrain  Cylinders  Enginesize 

1      31         None          Front      4         1.8 

2      25   Driver & Passenger  Front      6         3.2 

3      26   Driver only         Front      6         2.8 

4      26   Driver & Passenger  Front      6         2.8 

5      30   Driver only         Rear       4         3.5 

Horsepower RPM Rev.per.mile Man.trans.avai1 Fuel.tank.capacity 

1 140      6300   2890         Yes                13.2 

2 200      5500   2335         Yes                18.0 

3 172      5500   2280         Yes                16.9 

4 172      5500   2535         Yes                21.1 

5 208      5700   2545         Yes                21.1 

Passengers Length Wheelbase Width Turn.circle Rear.seat.room 

1    5        177     102      68        37        26.5 

2    5        195     115      71        38        30.0 
    5        180     102      67        37        28.0 

4    6        193     106      70        37        31.0 

5    4        186     109      69        39        27.0 

Luggage.room      Weight      Origin    Make 

1        11             2705       non-USA    Acura Integra 

2        15             3560       non-USA    Acura Legend 

3        14             3375       non-USA    Audi 90 

4        17             3405       non-USA    Audi 100 

5        13             3640       non-USA    BMW 535i 

Extract the Weight column (list-like subsetting). 

view data by field name


Cars93$Weight 
or using a named identity where the square brackets denote a co-ordinate system or [rows, columns]  a blank denotes all


Cars93[, "Weight"]

or using a numerical identity


Cars93 [,25] 

Output:   
         [1]  2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 3935 2490 2785 
         [14] 3240 3195 3715 4025 3910 3380 3515 3085 3570 2270 2670 2970 3705 
         [27] 3080 3805 2295 3490 1845 2530 2690 2850 2710 3735 3325 3950 1695 
         [40] 2475 2865 2350 3040 2345 2620 2285 2885 4000 3510 3515 3695 4055 
         [53] 2325 2440 2970 3735 2895 2920 3525 2450 3610 2295 3730 2545 3050 
         [66] 4100 3200 2910 2890 3715 3470 2640 2350 2575 3240 3450 3495 2775 
         [79] 2495 2045 2490 3085 1965 2055 2950 3030 3785 2240 3960 2985 2810 
         [92] 2985 3245 
Find out the attributes of cars heavier than 4000kg: 


Cars93[Cars93$Weight > 4000, ] 

Output:   

Manufacturer Model Type Min.Price Price Max.Price MPG.city
MPG.highway
  8
Buick
Roadmaster
Large
22.6
23.7
24.9
16
25
  17
Chevrolet
Astro
Van
14.7
16.6
18.6
15
20
  52
Lincoln
Town_Car
Large
34.4
36.1
37.8
18
26
  66
Nissan
Quest
Van
16.7
19.1
21.5
17
23

AirBags DriveTrain Cylinders EngineSize Horsepower RPM Rev.per.mile
  8
Driver
only
Rear
6
5.7
180
4000
1320
  17
None
4WD
6
4.3
165
4000
1790
  52
Driver
&
Passenger
Rear
8
4.6
210
4600
1840
  66
None
Front
6
3.0
151
4800
2065

Man.trans.avail Fuel.tank.capacity Passengers Length Wheelbase Width Turn.circle
  8
No
23
6
216
116
78
45
  17
No
27
8
194
111
78
42
  52
No
20
6
219
117
77
45
  66
No
20
7
190
112
74
41

Rear.seat.room Luggage.room Weight Origin Make
  8
30.5
21
4105
USA
Buick
Roadmaster
  17
33.5
NA
4025
USA
Chevrolet
Astro
  52
31.5
22
4055
USA
Lincoln
Town_Car
  66
27.0
NA
4100
non-USA
Nissan
Quest

What is the heaviest car that get over 30 miles per gallon in the city? 

First look at the names of the columns in the dataset. 


names(Cars93) 

Output:   
  [1] "Manufacturer"
"Model"
"Type"
  [4] "Min.Price"
"Price"
"Max.Price"
  [7] "MPG.city"
"MPG.highway"
"AirBags"
  [10] "DriveTrain""Cylinders"
"EngineSize"
  [13] "Horsepower""RPM"
"Rev.per.mile"
  [16] "Man.trans.avail"
"Fuel.tank.capacity"
"Passengers"
  [19] "Length"
"Wheelbase"
"Width"
  [22] "Turn.circle""Rear.seat.room"
"Luggage.room"
  [25] "Weight"
"Origin"
"Make"

Create a new data frame of cars that get over 30 miles per gallon in the city. 


temp.data <- Cars93[Cars93[, "MPG.city"] > 30, ]

What is the heaviest weight in temp.data?


max(temp.data [, "Weight"]) 

Output:   2350 

Find the heaviest car in temp.data 


temp.data [temp.data [,"Weight"] == max (temp.data [,"Weight"]) , ] 

Output:   

Manufacturer Model Type Min.Price Price Max.Price
MPG.city MPG.highway
  42
Honda
Civic
Small
8.4
12.1
15.8
42
46
  73
Pontiac
LeMans
Small
8.2
9.0
9.9
31
41

AirBags
DriveTrain
Cylinders
EngineSize
Horsepower
RPM
Rev.per.mile
  42
Driver
only
Front
4
1.5
102
5900
2650
  73
None
Front
4
1.6
74
5600
3130

Man.trans.avail
Fuel.tank.capacity
Passengers
Length
Wheelbase
Width
Turn.circle
  42
Yes
11.9
4
173
103
67
36
  73
Yes
13.2
4
177
99
66
35

Rear.seat.room
Luggage.room
Weight
Origin
Make
  42
28.0
12
2350
non-USA
Honda
Civic
  73
25.5
17
2350
USA
Pontiac
LeMans

##

##
       R and Statistics       ##

##

##

      1. Tests for comparing means 

For comparing the means of two samples, it is common to use the Student's t-test to perform the analysis. For ≥ 2 samples, we can perform an Analysis of Variance (ANOVA). However these tests explicitly require the assumption of normality for the data within each sample. 

The data in the table below are from three very similar experiments to measure acceleration due to gravity. 

The data given are 103 x (measurement in cm/sec2 => 980). 

Experiment 1: 95 -90 76 87 79 77 71 

Experiment 2: 82 79 81 79 77 79 79 78 79 82 76 73 64 

Experiment.3: 76 82 74 94 83 72 84 81 79 77 

The research questions that may need answering include: 
   (a) How would we check that each sample comes from a normal distribution? 
   (b) Make statistical comparisons of the averages and of the variances of the samples in the first two experiments and interpret the results. 
   (c) How can we compare the data from all three samples to find out whether they have the same mean? 
   (d) How would you compare the samples in the fust two experiments if you knew they did not come from normal distributions? 

To answer the questions using R: First we need to enter the data, which we can do so in various ways: 

ex.1 <-c(95,-90,76, 87,79,77,71) 


ex.2 <-scan()
    Output:   
   1:


82 79 81 79 77 79 79 78 79 82 76 73 64 
    Output:   
   14:
  Press enter to continue in the 'console' pane
 
ex.3 <-c(76,82,74,94,83,72,84, 81,79, 77) 

To answer (a), we can use a normal probability plot, also known as a QQ-plot, to obtain graphical evidence:

par (pty="s")

# set up a square plot 


qqnorm(ex.1)

# plot the qq points


qqline(ex.1)  
# add the qq line


par(pty="mW")

# reset the plotting area to default 
 plots can be found in the folder called 'plots' inside the Introduction to R folder.
 ###    01_Normal_QQ_plot.png

Or we can perform a Kolmogorov-Smirnov test to obtain quantitative evidence: 

ks.test(ex.1, "pnorm", mean = mean(ex.1),sd = sd(ex.1))

Perform similar analyses for ex.2 and ex.3. 

For part (b), we need to compare the variances first (as how we.compare the means will depend on whether the variances are equal or not). 


var.test(ex.1, ex.2, alternative = "two.sided") 


var.test(ex.1, ex.2, alternative = "greater") 

Note the difference in results between the two.   In order to be conservative, we perform our t-test without the assumption of equal variances. 


t.test(ex.1, ex.2, var.equal = FALSE)

To answer (c), we need to perform an Analysis of Variance (ANOVA).This requires some additional work to be done to combine the data into the format suitable for R to analyse. 


ex.comb <-c (ex.1, ex.2, ex.3) 


ex.flag <-c(rep (1, times = length(ex.1) ) ,rep(2, times =   


length(ex.2)) ,rep(3, times = length(ex.3) ) )

See what ex.flag looks like 


ex.flag 

 Output: 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3


aov.out <-aov (ex.comb ~ ex.flag) 


summary(aov.out) 

Make sure you understand how to interpret the result from the summary. 

##      2. Analysis for categorical data

Suppose we have observed the following data for a study on lung cancer and smoking. Perform an appropriate test to see whether lung cancer is associated with smoking, and quantify any observed association.

        Lung cancer (+)
        Lung cancer (-)
        Smoking (+)
        1301
        1205
        Smoking (-)
        56
        152

The appropriate analysis here is to use a chi-square test of independence. 

First we need to set up the data input as a matrix. 


input <- matrix(c(1301, 1205, 56, 152), nr = 2, nc = 2, byrow = T) 


colnames(input) <-c ("Cancer", "No cancer") 


rownames(input) <-c ("Smoker", "Non-smoker") 


input
 #inspect the data to make sure it is OK


chisq.test(input) 

Thus there is extremely significant evidence to suggest an association between smoking and lung cancer. We need to quantify the direction and magnitude of this association using odds ratio.

You can write a program and create it as a function for performing this analysis.


odds.ratio <-function (data, CI = 0.95) { 



a1 <-data[1,1]



b1 <-data[2,1] 



c1 <-data[1,2] 



d1 <-data[2,2]



OR <-(a1*d1)/ (b1*c1) 



conf.int <-double(2) 



p.value<-chisq.test(matrix(c(a1,b1,c1,d1),nr=2,nc=2))$p.value 



sd.OR <- sqrt(1/a1 + 1/b1 + 1/c1 + 1/d1) 



conf.int[1] <-exp(log(OR) - qnorm(1 -(1-CI)/2) * sd.OR) 



conf.int[2] <-exp(log(OR) + qnorm(1 -(1-CI)/2) * sd.OR) 



output <- list(odds.ratio=OR, p.value=p.value,Confidence.Interval=conf.int) 



output 


}



odds.ratio(input)
#call and run function

Note: Odds ratios should always be reported together with confidence intervals and p values. 

#    3. Linear regression analysis 

J.Fox (1997) reports measurements on 200 people from C. Davis, Departments of Physical Education and Psychology, York University, Canada. 

The data are in data frame Davis in library car.   For a quick look, try: 

library(car)


summary(Davis)


pairs(Davis)      ###  02-Davis_pairs.png

There is obviously a problem with one observation, a female whose measured height and weight appear to have been interchanged. 


attach (Davis) 

This makes the column labels of the data frame recognisable in R without  having to always reference the table. 


plot (height, weight)        ###   03-Davis_height-weight.png


identify (height, weight) 

This allows you to click on the plot and identify specific points. 

You will need to close the window/press the ESC key before proceeding

detach("Davis") 

We can fix the dataset to correct for the problematic data point. What is it's row number ?

One of the rows has weight and height transposed. Identify which row and swap the two values:

nDavis
<- Davis
 #make a copy of the original dataset 


replace the question mark (?) with the datum value you determined above
 
nDavis[?, 2:3]
<- Davis[?, 3:2] 


pairs (nDavis)               ###  04-nDavis_pairs.png


attach (nDavis) 


plot( height, weight )     ###  05-nDavis_height-weight.png
It will make more sense to look at males and females separately. There are many ways to -do this, but here is the simplest: 

plotit <-function(){ 



plot(height, weight, type = "n") 



points(height [sex=="M"] ,weight [sex=="M"] ,pch = 16, col = 4) 



points(height [sex=="F"] ,weight [sex=="F"] ,pch = 16, col = 2) 


}

plotit()   ###  06-plotit.png

Now suppose we are interested in the correlation between height and weight: 

cor (nDavis [, "height"], nDavis [, "weight"]) 


cor.test (nDavis [, "height"], nDavis [, "weight"]) 
Let us re-plot the data and add a linear regression line: 


plotit() 


fit.1 <- lm(weight ~ height, data = nDavis) 


summary (fit.1)# what does this say? 


anova (fit.1) 


abline (fit.1)      ###  07-plotit-fit1.png
The command lm fits a linear model to the data, analyzing how the numerical response depends on the covariates and factors that you have in the data. In fit.I,we have only looked at the response weight with one-covariate height. We can try and see whether there is a need to stratify the data by sex.   Will two lines be better, one for each sex? Suppose we try two parallel lines: 

fit.2 <-lm(weight ~ height + sex, data = nDavis) 


summary (fit.2) 


anova(fit.1, fit.2) #what is this doing? 


plotit() 


mnew <-data.frame(sex = "M", height = range (height [sex=="M"]) )


fnew <-data.frame (sex = "F", height = range (height [sex=="F"]) )


lines(mnew$height, predict (fit.2, mnew) ) #what does this do?


lines(fnew$height, predict (fit.2, fnew) ) #what does this do? 
###  08-plotit-fit2.png
Will we need two separate lines with different gradients instead? 

We can open a new plot window to allow you to compare both models

X11()


fit.3 <-lm(weight ~ height * sex, data = nDavis) 

what is the difference between fit.2 and fit.3? 


summary(fit.3)


anova(fit.2, fit.3) #what is this doing? 


plotit()


lines(mnew$height, predict (fit.3, mnew) )


lines(fnew$height, predict (fit.3, fnew) ) 
###  09-plotit-fit3.png
What do you think will be the most suitable model here? 

Genetic Case-control Logistic Regression with R 

ardive dyskinesia is a movement disorder, which develops in approximately 10 -20% of patients on long-term neuroleptic treatment. It has been established previously that factors like age, gender and duration of exposure to neuroleptics are risk factors. In addition, family history is believed to be a risk factor, indicating possible links to genetic factors. 

A research study investigating the effects of two genes is performed, and the data for the study can be found in tardive.csv, consisting of the following variables. 

  Variable




Description 
    code

          Subject identification code 
    race
          
1=Chinese; 2 =Japanese 
    Age
          
Age of subject at time of study (years) 
    sex
          
1 =male; 2 =female 
    durill         
Duration of illness of each subject to the commencement of study
(years) 
    exponeur       
Cumulative exposure to neuroleptics (years) 
    cpz
          
Daily dosage of chlorpromazine (mg) -a euroleptic 
    td
              Status of tardive dyskinesia: 1=unaffected; 3=affected

    htra

          Genotype of genetic marker A: 0 = GG; 1=AG; 2 =AA 
    t102
          
Genotype of genetic marker B: 0 =CC; 1=TC; 2 =TT 

By performing suitable exploratory data analysis (EDA) on each of the variables, identify some of the problematic variables, and give suitable suggestions on how to overcome the problems. (Inparticular, there are some problems with the variables race and age) 
  We need to read in some data. To do this set the working directory in R:


setwd( path to working directory )

e.g.

setwd('/media/ubuntu/data/GEIA/Practicals/01_Introduction_to_R/')
Ask if you are not sure where the data is. You should then be able to read the data using the following command:

tardive <- read.csv("tardive.csv" , header = T ) 


summary(tardive) 
Notice that some of the categorical variables have been treated as numerical variables. Recode them as factors and reproduce a summary. 

for (i in c ("RACE", "SEX", "TD" ,"HTRA", "T102") ) { 



tardive [, i] <-as.factor (tardive [, i] ) 


}

summary(tardive) 
Produce histograms for the numerical variables. 
  
hist (tardive [, "AGE"])         ###  10-tardive-AGE.png


hist (tardive [, "DURILL"])      ###  11-tardive-DURILL.png


hist (tardive [, "EXPONEUR"])    ###  12-tardive-EXPONEUR.png


hist (tardive [, "CPZ"])         ###  13-tardive-CPZ.png
You should have noticed that there are 3 problems in this dataset: 
     (i)
there is only 1 Japanese individual in the dataset; 
     (ii)
 there is an individual with an age of 0; 
     (iii)
there are some values in exponeur which have been coded as 99. 

We need to clean up the dataset before proceeding at this point. Let us identify and exclude these datapoints. 


exclude.race <- which (tardive [, "RACE"] == "2") 


exclude.age <- which (tardive [, "AGE"] == 0) 


exclude.exponeur <- which (tardive [, "EXPONEUR"] == 99) 


exclude.combine <- c(exclude.race, exclude.age, exclude.exponeur) 
Why do we need "" in race, but not in age or exponeur? 

Define a new-data frame without the problematic data. 

tardive.new <-tardive[-exclude.combine,] 


summary( tardive.new) 


hist (tardive.new [, "AGE"])        ###  14-tardive-new-AGE.png


hist (tardive.new [, "DURILL"])     ###  15-tardive-new-DURILL.png


hist (tardive.new [, "EXPONEUR"])   ###  16-tardive-new-EXPONEUR.png


hist (tardive.new [, "CPZ"])        ###  17-tardive-new-CPZ.png
The research effectively constitutes a case-control study, where the status of each subject is determined by the status of td.Provide summary statistics for the variables age, sex, durill, exponeur and cpz for each of the two levels of td. 

case.flag <- which(tardive.new[, "TD"] == "3") 


control.flag <- which(tardive.new[, "TD"] == "1") 


summary(tardive.new[case.flag,]) 


summary(tardive.new[control.flag,]) 
Produce separate cross-tabulations of the levels of td with the genotypes of each of the two genetic markers, and perform a chi-square test of independence to see whether disease is independent of the genotypes. 

htra.table <-table(tardive.new[, "TD"], tardive.new[, "HTRA"]) 


htra.table


chisq.test(htra.table) 

tl02.table <-table(tardive.new[, "TD"] , tardive.new[, "T102"] ) 


tl02.table 


chisq.test(tl02.table) 
Produce a scatterplot for the variables age and durill,as well as age and exponeur, and comment on the relation. By performing a suitable regression on the variables, obtain the relationship between age and both durill and exponeur. 


plot (tardive.new[, "DURILL"], tardive.new[, "AGE"])       18-tardive-DURILL-AGE.png


plot (tardive.new[, "EXPONEUR"], tardive.new[, "AGE"])     19-tardive-EXPONEUR-AGE.png


age.lm <-lm(AGE ~ DURILL + EXPONEUR, data = tardive.new) 


summary(age.lm) 
Produce boxplots for CPZ consumption across both cases and controls, and perform a suitable test to find out whether there are any significant differences in the CPZ consumption between the cases and controls. 

plot(tardive.new[, "TD"], tardive.new[, "CPZ"])     20-tardive-TD-CPZ.png

t.test(tardive.new[case.flag,"CPZ"],tardive.new [control.flag,"CPZ"]) 
It is believed that subjects in certain genotype group within marker A have higher daily CPZ consumption, investigate this claim by performing suitable analyses on the daily CPZ consumption for the different levels of htra. 


cpz.aov <-aov(tardive.new[, "CPZ"] ~ tardive.new[, "HTRA"]) 


summary(cpz.aov) 
Note: We have looked at the difference of CPZ consumption across cases and controls (using a 2-independent sample t-test), as well as look at the distributions of the genotypes for htra and t102 across cases and controls. A better way to investigate all these variables is to use a logistic regression framework, which allows the investigation of the relationship between a binary categorical response against multiple explanatory variables. 
A logistic regression can be fitted to the data to fmd which are the factors that significantly affect the status of tdthrough the use of the glm dommand. 

tardive.new$TDNEW = NA


tardive.new$TDNEW[case.flag] <- 1


tardive.new$TDNEW[control.flag] <- 0


tardive.new$TDNEW = as.factor( tardive.new$TDNEW )

tardive.glm <- glm(TDNEW ~ AGE + SEX + DURILL + EXPONEUR + CPZ 
                    + HTRA + T102, family = "binomial", 
                    na.action = "na.omit", data = tardive.new) 


summary(tardive.glm) 

How do you interpret the output? Specifically, how do you interpret the estimates? You may want to find out which is the baseline category for the response, which is always the fistlevel of the categorical response. 

levels(tardive.new[, "TDNEW"] ) 

summary(tardive.glm) 
Notice that this regresses the two genetic variants htra and t102 as categorical variables with 2 levels. This specifically assumes that we are testing a general model for genetic inheritance. If we decide to test an additive model, we will want to code the levels of each variant as 0, 1 and 2. This is easy since the original coding for the data is already numerical. 


tardive.glm.add <- glm( TDNEW ~ AGE + SEX + DURILL + EXPONEUR + CPZ 
                         + as.numeric(HTRA) + as.numeric(T102), 
                         family = "binomial", na.action = na.omit, 
                         data = tardive.new)

summary(tardive.glm.add) 
What is the difference between tardive.glm and tardive.glm.add? 

What happens if we want to test a dominant model for the first allele for htra instead? This means we want to combine levels 0 and 1 in htra and compare this combined category against level 2. This can be easily achieved by doing: 

  tardive.glm.dom <- glm( TDNEW ~ AGE + SEX + DURILL + EXPONEUR + CPZ 
                            + (HTRA == 2)  + as.numeric(T102), family = "binomial", 
                            na.action = "na.omit", data = tardive.new) 

summary(tardive.glm.dom) 
Let us go back to the model assuming general effects for the two genetic variants, tardive.glm. NOW suppose we want to find which are the explanatory variables that contribute in explaining the onset of tardive dyskinesia, we can start off by removing variables which we feel do not contribute to the model. Let us look at the p-values for each variable first: 

anova(tardive.glm, test = "Chisq") 

Why do we need to use the ANOVA procedure here rather than just rely on the p-values from summary (tardive.glm)? 

The variable EXPONEUR seems to be least useful, and we can choose to remove it: 


tardive.glm2 <- glm( TDNEW ~ AGE + SEX + DURILL + CPZ + HTRA + T102,family = "binomial", 
                     na.action = "na.omit", data = tardive.new) 

anova(tardive.glm2, test = "Chisq") 
There seems to be no gender-specific effects, and we can choose to remove sex: 


tardive.glm3 <- glm( TDNEW ~ AGE + DURILL + CPZ +
HTRA + T102, family = "binomial", na.action = na.omit, data = tardive.new)
anova(tardive.glm3, test = "Chisq") 
As we progresses, we end up with the final model which says: 


tardive.glm4 <- glm( TDNEW ~ AGE + CPZ, family = "binomial", 
na.action = na.omit, data = tardive.new) 

summary(tardive.glm4) 
end

