#### NATIONAL HUMAN GENOME RESEARCH INSTITUTE Division of Intramural Research



U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES | NATIONAL INSTITUTES OF HEALTH | genome.gov/DIR



Center for Research on Genomics and Global Health NATIONAL HUMAN GENOME RESEARCH INSTITUTE Division of Intramural Research





#### Adebowale Adeyemo, MD Deputy Director, Center for Research on Genomics & Global Health NHGRI/NIH

WT Genome Epidemiology Course, Durban, RSA – June 2015

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES | NATIONAL INSTITUTES OF HEALTH | genome.gov/DIR







### Genome epidemiology

- Tools and Technology: high throughput genotyping and sequencing platforms, high performance computers, clusters and storage...
- Data and Databases: reference databases, genome browsers, central repositories of study data,...
- Analytic and Visualization Paradigms

### In this course:

- Genetic association studies
- Genome wide association studies (GWAS)
- Population genetics
- Meta-analysis of GWAS
- Sequencing
- Public resources
- Practicals: R, RStudio, plink, Linux
- Emphasis on process

#### Published Genome-Wide Associations through 12/2012 Published GWA at p≤5X10<sup>-8</sup> for 17 trait categories



Genome Research

# GWAS in Africa\*: July 2013

| First Author<br>(Date)    | Disease/Trait            | Initial sample<br>size                          | Replication sample size | Platform                           | Location(s)                         | Comment                                            |
|---------------------------|--------------------------|-------------------------------------------------|-------------------------|------------------------------------|-------------------------------------|----------------------------------------------------|
| Jallow et al<br>(2009)    | Severe malaria           | 2500                                            | 3400                    | Affymetrix 500K                    | Gambia                              | First GWAS in<br>Africa                            |
| Timman et al<br>(2012)    | Severe malaria           | 2153                                            | 3542                    | Affymetrix 6.0                     | Ghana                               |                                                    |
| Band et al<br>(2013)      | Severe malaria           | ~12000                                          | NA                      | Illumina (various)                 | Malawi; Kenya;<br>Gambia            | *meta-analysis                                     |
| Petrovski et al<br>(2010) | HIV-1                    | 1532                                            | NA                      | Illumina 1M/1M-Duo                 | Malawi                              |                                                    |
| Lingappa et al<br>(2011)  | HIV-1                    | 798                                             | NA                      | Illumina 1M-Duo                    | Multiple sites in & Southern Africa |                                                    |
| Luo et al<br>(2012)       | HIV resistance           | 108                                             | NA                      | Affymetrix 50k<br>Xba240           | Kenya                               | *Low resolution<br>?GWAS                           |
| Thye et al<br>(2010)      | Tuberculosis             | 3117                                            | 4384                    | Affymetrix 500K/<br>Affymetrix 6.0 | Ghana; Gambia                       |                                                    |
| Thye et al<br>(2012)      | Tuberculosis             | 3176                                            | ~13000                  | Affymetrix 6.0                     | Ghana; Gambia-<br>Indonesia-Russia  |                                                    |
| Kang et al<br>(2010)      | Anthropometric<br>traits | 1188 Nigerians<br>(+ 743 African-<br>Americans) | 2728                    | Affymetrix 6.0                     | Nigeria (USA)                       |                                                    |
| Ayele et al<br>(2012)     | Podoconiosis             | 397                                             | 606                     | Illumina 610                       | Ethiopia                            | First GWAS in<br>Africa of an NCD<br>and of an NTD |

\*Does not include papers about selection, e.g. Alkorta-Aranburu et al PLoS Genetics 2012

### More recent GWAS from Africa

- Mtatiro et al: Genome wide association study of fetal hemoglobin in sickle cell anemia in Tanzania. PLoS One. 2014 Nov 5;9(11):e111464. PubMed PMID: 25372704; PubMed Central PMCID: PMC4221031.
- Cook et al: A genome-wide association study of prostate cancer in West African men. Hum Genet. 2014 May;133(5):509-21. PubMed PMID: 24185611; PubMed Central PMCID: PMC3988225.
- Chimusa et al: Genome-wide association study of ancestryspecific TB risk in the South African Coloured population. Hum Mol Genet. 2014 Feb 1;23(3):796-809. doi: 10.1093/hmg/ddt462. PubMed PMID: 24057671; PubMed Central PMCID: PMC3888262.

## **GWAS** Catalog

NHGRI GWAS Catalog is now the NHGRI-EBI GWAS of published genome wide association studies

Now at http://www.ebi.ac.uk/gwas/



#### **GWAS** Catalog

# The NHGRI-EBI Catalog of published genome-wide association studies

Search the catalog

Examples: breast cancer (search?query=breast%20cancer), rs7329174 (search?query=rs7329174), Yang (search?query=Yang), 2q37.1 (search?query=2q37.1), HBS1L (search?query=HBS1L)

Q

## H3Africa



## Why an African GWAS array?

African-derived populations have greater genetic diversity and lower levels of LD, requiring a greater density of SNPs to provide genomewide coverage of common variation

Arrays optimized for African populations derive content from HapMap/1000 Genomes African populations and African-Americans/ Afro-Caribbeans/other African diaspora populations



Variants per genome (1KG phase 3)

## Why an African GWAS array?

H3Africa projects cover many African ethnic groups, few of which have dense genotype/sequence data and for whom coverage of existing products is often suboptimal

#### National Institutes of Health Wellcome Trust H3Africa Research Network



## Draft parameters for African custom array

- A GWAS chip that adequately captures common variation in African populations, especially those in H3A projects
- Desired features:
  - "good" coverage of common variation in H3A populations;
  - good scaffold for imputation;
  - useful specific content e.g. reported GWAS hits, PGx variants, HLA, fingerprint SNPs,...
  - ? option to add custom content
- Timeline: ready before H3A projects samples ready for genotyping; possibility of more than one version

#### Data to be used

# WGS from African populations

- Previous studies
- Recent/ongoing studies
- NIH/NHGRI supplement for WGS

XXXXXXXXX

| Country            | Ethnolinguistic group | Count | Depth | Source            | Location | Size (TB) |
|--------------------|-----------------------|-------|-------|-------------------|----------|-----------|
| Uganda             | Baganda               | 1567  | 4x    | UG2G              | WTSI     | 40.4      |
| Uganda             | Banyarwanda           | 199   | 4x    | UG2G              | WTSI     | 5.1       |
| Uganda             | Rwandos: Ugandan      | 76    | 4x    | UG2G              | WISI     | 1.9       |
| Uganda             | Barundi               | 51    | 4x    | UG2G              | WTSI     | 1.4       |
| Uganda             | Banyankole            | 36    | 4x    | UG2G              | WTSI     | 0.9       |
| Uganda             | Bakiga                | 30    | 4x    | UG2G              | WTSI     | 0.8       |
| Uganda             | Other                 | 41    | 4x    | UG2G              | WTSI     | 1.1       |
| Uganda             | Baganda               | 100   | 4x    | AGVP              | WTSI     | 2.7       |
| South Africa       | Zulu                  | 100   | 4x    | AGVP              | WTSI     | 2.3       |
| Ethiopia           | Amhara                | 24    | 8x    | AGVP              | WTSI     | 1.0       |
| Ethiopia           | Gumuz                 | 24    | 8x    | AGVP              | WTSI     | 1.0       |
| Ethiopia           | Oromo                 | 24    | 8x    | AGVP              | WTSI     | 1.0       |
| Ethiopia           | Somali                | 24    | 8x    | AGVP              | WISI     | 1.0       |
| Ethiopia           | Wolayta               | 24    | 8x    | AGVP              | WISI     | 1.0       |
| Egypt              | Unspecified           | 100   | 8x    | GDAP              | WTSI     | 5.0       |
| South Africa       | Khoe-San (Nama)       | 104   | 4x    | GDAP              | WISI     | 3.6       |
| Nigeria            | Esan (ESN)            | 99    | 4x    | 1000G             | 1000G    | 2.2       |
| Gambia             | Gambian (GWD)         | 113   | 4x    | 1000G             | 1000G    | 2.9       |
| Kenya              | Luhya (LWK)           | 101   | 4x    | 1000G             | 1000G    | 2.2       |
| Sierra Leone       | Mende (MSL)           | 85    | 4x    | 1000G             | 1000G    | 1.9       |
| Nigeria            | Yoruba (YRI)          | 109   | 4x    | 1000G             | 1000G    | 2.3       |
| South Africa       | Sotho                 | 8     | 30x   | SAHGP             | CBIO     | >0.7TB    |
| South Africa       | Xhosa                 | 8     | 30x   | SAHGP             | CBIO     | ≈0.7TB    |
| Burkina Faso       | Mossi                 | 50    | 30x   | Ramsay            | Baylor   | \$22.5TB  |
| Camerron           |                       | 25    | 30x   | Wonkam            | Baylor   | sel1.3TB  |
| Mali               | Bambara               | 50    | 30x   | Landoure          | Baylor   | se22.5TB  |
| Nigeria            | Birom-Berom           | 16    | 30x   | Adebamowo/Abimiku | Baylor   | 967.2TB   |
| Ghana              | Ewe/Akan              | 50    | 30x   | Adu/Ojo/Burke     | Baylor   | se22.5TB  |
| Benin              | Fon                   | 50    | 30x   | Awadalla          | Baylor   | s:22.5TB  |
| Zambia             |                       | 50    | 30x   | Fowler            | Baylor   | se22.5TB  |
| Cameroon           |                       | 25    | 30x   | Fowler            | Baylor   | sel1.3TB  |
| Total <sup>a</sup> |                       | 2363  |       |                   |          | 817491436 |

Table 1: Sample sets to be included in design of the African chip array. Size refers to size of mapped sequence reads stored in barn file format.



## Resources with both genotype & phenotype data

#### dbGAP: The database of Genotypes and Phenotypes

http://www.ncbi.nlm.nih.gov/gap



#### EGA: European Genome-phenome Archive

#### https://www.ebi.ac.uk/ega/home

| ЕМВL-ЕВІ                                                                                                                                                                                                                                           | Services Research Training About Us                                          |                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|
| European Genome-phenome<br>Archive                                                                                                                                                                                                                 | All ÷ Examples: EGAS000000001, Cancer                                        |                                                           |
| EGA home About Studies Datasets Data access committees Data providers Submit to EG                                                                                                                                                                 | A Contact Us                                                                 |                                                           |
|                                                                                                                                                                                                                                                    | Help                                                                         |                                                           |
| The European Genome-phenome Archive (EGA) allows you to explore <b>datasets</b> from genomic <b>studies</b> , pro<br>a range of <b>data providers</b> . Access to datasets must be approved by the specified <b>Data Access Committe</b><br>(DAC). | vided by  o Users FAQ o Submitters FAQ o Using your EGA account o Contact Us | DME RESEARCH INSTITUTE<br>Division of Intramural Research |

### In this course:

- Genetic association studies
- Genome wide association studies (GWAS)
- Population genetics
- Meta-analysis of GWAS
- Sequencing
- Public resources
- Practicals: R, Rstudio, plink, Linux

### What next?

**Review course materials** 

Practice with the aid of the practicals

Apply what you learnt to your own/other datasets

Keep in touch with your colleagues

## What next?

Indicate to your PI/Group Leader that you now have these skills; interest in applying the skills

Participate in the analysis of consortium and similar projects

Keep abreast of developments in the field

Look for opportunities for career development

#### What next?

# Safe travels!

