Wellcome Trust Advanced Courses; Genomic Epidemiology in Africa, 21st – 26th June 2015 Africa Centre for Health and Population Studies, University of KwaZulu-Natal, Durban, South Africa

Introduction to genetic association studies in Africa

Dr Kirk Rockett

The Wellcome Trust Centre for Human Genetics

A complex trait

- A small proportion of variation is caused by rare gene defects causing major disruption of normal physiological processes. These tend to be found at the extremes of the distribution.
- Most variation is probably due to multiple common variants that slightly alter normal physiological processes. It is challenging to pin down the variants responsible because, at an individual level, they do not have strong effects.

Variation in resistance & susceptibility to disease

Why should we look for common variants with small effects?

- These variants may not contribute much to overall risk.
- But they may lead to new insights into etiology of disease – e.g. mechanisms of immunity, disease, drug action, erythrocyte invasion and other critical host – parasite interactions.
- ...and new drug targets.
- We now have the scientific tools to do it.

Genetic variation

Figure 1-30 Molecular Biology of the Cell 5/e (© Garland Science 2008)

DNA structure overview

Figure 4-72 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Genetic variation in the human genome

Figure 4-11 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Common forms of variation in the human genome

There are many different variants including

small variations in the DNA sequence, e.g.

- a small 'spelling mistake'
- deletion or insertion of a few characters

large structural variations, e.g.

- deletion of a large part of DNA sequence
- multiple copies of a section of DNA sequence, with variable copy number

Common forms of variation in the human genome

Most variants are single nucleotide polymorphisms (SNPs)

ACT<mark>C</mark>TACGATTTACGGTACTTAG<mark>G</mark>AGCATATGCTACT ACT<mark>G</mark>TACGATTTACGGTACTTAG<mark>。</mark>AGCATATGCTACT

SNP

single nucleotide polymorphism

About 38 million SNPs found across the human genome worldwide – one every 84bp. **indel** insertion / deletion

Maybe ~2 million small indels worldwide – about one every 1,600bp.

Common forms of variation in the human genome

Finding loci that influence disease

Finding loci that influence disease

Association studies broadly fall into two categories:

- Family-based studies
- Case/control studies

Mixed designs are also possible.

Variation in resistance & susceptibility to disease

Variation in resistance & susceptibility to disease

Family (linkage and/or sequencing) studies

Family-based association analysis

Compare *probands* (e.g. cases) with other family members, such as parents.

Pros:

- Robust against potential confounding factors, such as population structure or environmental effects.
- Great when looking for variants with *big* effects.
- Extended family designs can go where other designs can't^{(*).}

Cons:

- Can be harder difficult to collect large samples.
- For common variants / complex trait association there is potentially reduced power (for equal sample size)

Variation in resistance & susceptibility to disease

Case/control association analysis

Compare disease-affected individuals (*cases*) with unaffected individuals (*controls*).

Large sample sizes can be realised => powered to detect small effects.

Cons:

Potential confounding effects from differential selection of cases and controls – (e.g. cases and controls should be ethnically matched where possible).

Most of this course will focus on case/control designs.

What do we need to know to detect our effect?

Or what POWER do we have to detect an effect

A heuristic for statistical power

Power = how likely are we to find a real effect?

Variation in resistance & susceptibility to disease

Power $\approx N \beta^2 f(1-f) r^2$

Finding loci that influence disease

• Consider a position in the genome that shows variation between individuals, for example ...

- Each of the different variant forms is called an **allele**
- We are looking for alleles that are associated with **high or low risk of disease**

Example: sickle and severe Malaria

Gambian data (MalariaGEN consortium)

	Genotype			
	HbAA	HbAS	HbSS	
	(normal)	sickle trait	sickle cell disease	
			1	
	тт	AT	AA	
Severe malaria cases	2700	35	13	
Population	3689	588	22	

N = 7047 *f* = 0.07 (7%)

Example: sickle and severe Malaria

Gambian data (MalariaGEN consortium)

Genome-wide association analysis (GWAS) in a nutshell

Aim:

- Find common variants influencing disease by performing this test at millions of variants across the human genome.
- Typical modern experiment: type 2.5M variants in thousands of cases and thousands of population controls. Use estimated genome-wide relationships to control for population structure.
- This design exploits linkage disequilibrium to assess variants that are not directly typed.

Key concept: linkage disequilibrium

Genome-wide association (GWA) analysis in a nutshell

Amazingly, it works! E.g: 2,000 cases and 3,000 controls typed at 500k variants:

"Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls" The Wellcome Trust Case Control Consortium Nature 447 (2007)

Genome-wide association (GWA) analysis in a nutshell

The Wellcome Trust Case Control Consortium Nature 447 (2007)

With 6,000 cases and 15,000 controls imputed to 1 million variants:

"Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci", Franke et al Nature Genetics 42 (2010)

Genome-wide association (GWA) analysis in a nutshell

Different diseases have different architectures:

"Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls" The Wellcome Trust Case Control Consortium Nature 447 (2007)

Wellcome Trust Case Control Consortium

Best SNP marker was rs1333049

• OR ~ 1.47: one copy of the risk allele (present in half the population) increases "risk" of coronary artery disease by ~50%

 two copies of risk allele (present in quarter of population) almost doubles "risk" of coronary artery disease (OR 1.47 * 1.47)

Each population has a distinct pattern of genome variation

- Most SNPs are correlated with surrounding SNPs. This is known as linkage disequilibrium
- Linkage disequilibrium reflects the common combinations of variants (haplotypes) that exist in the population

GWAS in Africa

A number of factors make GWAS particularly challenging in Africa.

- Genome diversity much higher in African than other populations more SNPs, more structure, more haplotypes.
- Low levels of LD...
- ...and differences in LD between populations means power to detect untyped causal loci is reduced.
- A unique burden of infectious disease the full story might involve two or more genomes at once!

Malaria Genomic Epidemiology Network

MalariaGEN

www.malariagen.net

- Investigators in 16 malaria endemic countries: Burkina Faso, Cambodia, Cameroon, Gambia, Ghana, Ghana, Kenya, Malawi, Mali, Nigeria, Papua New Guinea, Senegal, Sudan, Tanzania, Thailand, Vietnam.
- ...and 6 non-endemic countries: France, Germany, Italy, Sweden, UK, USA
- Building a resource of DNA and clinical data from ~100,000 subjects

Recruitment of 13,000 cases of severe malaria

Question: In communities where every child is repeatedly infected with malaria, why do some children die and not others?

Cases and controls from:

- Burkina Faso
- Cameroon
- Gambia
- Ghana (Navrongo)
- Ghana (Kumasi)
- Kenya
- Malawi
- Mali
- Nigeria
- Papua New Guinea
- Tanzania
- Vietnam

Consistent effects despite phenotypic heterogeneity

HbAS effect in severe malaria

Consistent effects despite phenotypic heterogeneity

O blood group effect in severe malaria

ODDS RATIO

Attempt #1: GWAS of Severe Malaria in Gambia (2009)

ARTICLES

Genome-wide and fine-resolution association analysis of malaria in West Africa

Muminatou Jallow^{1,34}, Yik Ying Teo^{2,3,34}, Kerrin S Small^{2,3,34}, Kirk A Rockett^{2,3}, Panos Deloukas³, Taane G Clark^{2,3}, Katja Kivinen³, Kalifa A Bojang¹, David J Conway¹, Margaret Pinder¹, Giorgio Sirugo¹, Fatou Sisay-Joof¹, Stanley Usen¹, Sarah Auburn^{2,3}, Suzannah J Bumpstead³, Susana Campino^{2,3}, Alison Coffey³, Andrew Dunham³, Andrew E Fry², Angela Green², Rhian Gwilliam³, Sarah E Hunt³, Michael Inouye³, Anna E Jeffreys², Alieu Mendy², Aarno Palotie³, Simon Potter³, Jiannis Ragoussis², Jane Rogers³, Kate Rowlands², Elilan Somaskantharajah³, Pamela Whittaker³, Claire Widden³, Peter Donnelly^{2,4}, Bryan Howie⁴, Jonathan Marchini^{2,4}, Andrew Morris², Miguel SanJoaquin^{2,5}, Eric Akum Achidi⁶, Tsiri Agbenyega⁷, Angela Allen^{8,9}, Olukemi Amodu¹⁰, Patrick Corran¹¹, Abdoulave Djimde¹², Amagana Dolo¹², Ogobara K Doumbo¹², Chris Drakelev^{13,14}, Sarah Dunstan¹⁵, Jennifer Evans^{7,16}, Jeremy Farrar¹⁵, Deepika Fernando¹⁷, Tran Tinh Hien¹⁵, Rolf D Horstmann¹⁶, Muntaser Ibrahim¹⁸, Nadira Karunaweera¹⁷, Gilbert Kokwaro¹⁹, Kwadwo A Koram²⁰, Martha Lemnge²¹, Julie Makani²², Kevin Marsh¹⁹, Pascal Michon⁸, David Modiano²³, Malcolm E Molyneux⁵, Ivo Mueller⁸, Michael Parker²⁴, Norbert Peshu¹⁹, Christopher V Plowe^{25,26}, Odile Puijalon²⁷, John Reeder⁸, Hugh Reyburn^{13,14}, Eleanor M Riley^{13,14}, Anavaj Sakuntabhai²⁷, Pratap Singhasivanon²⁸, Sodiomon Sirima²⁹, Adama Tall³⁰, Terrie E Taylor^{25,31}, Mahamadou Thera¹², Marita Troye-Blomberg³², Thomas N Williams¹⁹, Michael Wilson²⁰ & Dominic P Kwiatkowski^{2,3}, Wellcome Trust Case Control Consortium³³ & Malaria Genomic Epidemiology Network³³

MalariaGEN wellcometrust

Principal components analysis

- Within a 40 sq mile area of The Gambia we find complex population structure
- Population structure can give rise to false positive genetic associations

MalariaGEN wellcometrust

Quantile-quantile plot of chi-squared statistic comparing what we observed versus what we'd expect if no disease association

MalariaGEN wellcometrust

Jallow et al. (2009) Nature Genetics 41: 657

GWA studies of severe malaria Study of 500,000 SNPs in 2,500 Gambian children

Jallow et al. (2009) Nature Genetics 41: 657

Low LD acts to attenuate GWA signals of association

- HbS signal is *P=4x10⁻⁷ (causal variant P=10⁻²⁸)*
- No signal at ABO

MalariaGEN wellcometrust

Targetted resequencing

- 5,000 cases and 7,000 controls from Gambia, Kenya and Malawi.
- Imputed to ~1.3M variants from the publically available HapMap reference panel.
- Novel methods to allow for heterogeneity and differences in haplotype background: heterogeneity Bayes factors, and region-based tests that take into account all variants in each region.

MANDINKA WOLLOF OTHER -0.3 -0.2 -0.1 0.0 First principal component Malawi 0.00 -0.10 -0.20 -0.30 -0.40 -0.15 -0.10 -0.05 0.00 0.05 First principal component

Gambia

Control for the extensive structure using a mixed model that takes into account relatedness at all levels. (PCs also used for comparison with similar results.)

i values for correlation between the motor is and case, control status.

	PC 1	PC 2	PC3	PC 4	PC 5
Gambia	1.35e-08	7.80e-05	0.00742	0.03446	6.44e-08
Malawi	1.37e-05	0.037366	0.047264	0.000541	0.846552
Kenya	< 2e-16	0.16672	3.72e-08	0.31626	0.00596

"Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations", Band G, et al. PLoS Genetics (2013)

5000 cases and 7000 controls from Gambia, Kenya and Malawi. Use of imputation into publically available reference set (HapMap) to assess association at 1.3M variants.

"Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations", Band G, et al. PLoS Genetics (2013)

Region	Chromosome	Regional test Bayes factor	
OR51F1 (HBB region)	11	> 1012	¹ Sickle Signal
ABO	9	4920	O blood group signal
BET1L	11	319	
C10orf57	10	243	
MYOT	5	112	
SMARCA5	4	110	
ATP2B4	1	103	Red cell calcium channel

LETTER

doi:10.1038/nature11334

Genome-wide association study indicates two novel resistance loci for severe malaria

Christian Timmann^{1,2}, Thorsten Thye^{1,2}, Maren Vens², Jennifer Evans^{1,3}, Jürgen May⁴, Christa Ehmen¹, Jürgen Sievertsen¹, Birgit Muntau¹, Gerd Ruge¹, Wibke Loag⁴, Daniel Ansong⁵, Sampson Antwi⁵, Emanuel Asafo-Adjei⁵, Samuel Blay Nguah⁵, Kingsley Osei Kwakye⁵, Alex Osei Yaw Akoto⁵, Justice Sylverken⁵, Michael Brendel^{1,2}, Kathrin Schuldt¹, Christina Loley², Andre Franke⁶, Christian G. Meyer¹, Tsiri Agbenyega⁵, Andreas Ziegler² & Rolf D. Horstmann¹

Attempt #3 (2015?): GWAS of severe malaria in eight populations in sub-Saharan Africa

- Approx. 10,000 cases and 10,000 controls (across 11 countries).
- Typed at 2.5M variants and imputed up to 40M variants from the phase 3 1000 Genomes reference panel.
- Starting to find new loci. Some evidence that there are rarer, bigger effects around, differing between populations.
- Data is being made publically available we have an ongoing effort to develop web-based tools for data sharing.

GWAS Summary

- Power to detect association depends on sample size, effect size, frequency, and density of markers. Bigger is better!
- Careful QC and control for confounding factors is essential.
- High diversity and patterns of LD make GWAS in Africa particularly challenging.

GWAS : the hare and the tortoise?

	Europe	Africa
Level of LD	high	low
Variability of LD	low	high
Finding signals of association by		
genome-wide SNP typing	easy	difficult
Localising causal variants by genome sequencing	difficult	?easy

Next-generation sequencing will transform genome-wide association analysis

In the near term

- The 1000 Genomes Project is including 2 MalariaGEN study sites (Gambia, Vietnam) in addition to at least 6 other African populations.
- Other groups working to create Africa-specific reference panels (e.g. AGVP, H3Africa).
- By combining GWAS data with population-specific sequence data, we can **boost** signals of association and **localise** causal variants.

In the longer term

- GWAS-by-sequencing will replace GWAS-by-SNP-typing.
- This will particularly benefit studies in Africa and multiethnic studies.

What's next?

As a warm-up for a full GWAS analysis later in the week, the next practical shows you how to perform association analyses on individual SNPs using R. (Based on MalariaGEN data.)