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A complex trait

rare common rare

Proportion of
individuals

Variation due to age, sex, environmental
factors (e.g. diet), and genetic variation.

A small proportion of variation is caused by rare gene defects causing major disruption of
normal physiological processes. These tend to be found at the extremes of the distribution.

Most variation is probably due to multiple common variants that slightly alter normal

physiological processes. It is challenging to pin down the variants responsible because, at an
individual level, they do not have strong effects.



Variation in resistance & susceptibility to disease

Why should we look for common variants with smali
effects?

 These variants may not contribute much to overall risk.

e Butthey may lead to new insights into etiology of disease
— e.g. mechanisms of immunity, disease, drug action,
erythrocyte invasion and other critical host — parasite
interactions.

e ..and new drug targets.

e We now have the scientific tools to do it.



Genetic variation
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Common forms of variation in the human genome

There are many different variants including

small variations in the DNA sequence, e.g.
e a small ‘spelling mistake’
e deletion or insertion of a few characters

large structural variations, e.g.
e deletion of a large part of DNA sequence

e multiple copies of a section of DNA sequence, with variable
copy number



Common forms of variation in the human genome

Most variants are single nucleotide polymorphisms (SNPs)

ACTCTACGATTTACGGTACTTAGGAGCATATGCTACT
ACTGTACGATTTACGGTACTTAG.AGCATATGCTACT

SNP indel
single nucleotide insertion /
polymorphism deletion
About 38 million SNPs found Maybe ~2 million small
across the human genome indels worldwide — about

worldwide — one every 84bp. one every 1,600bp.



Common forms of variation in the human genome

Structural variants

Hundreds of kilobases

e
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Finding loci that influence disease




Finding loci that influence disease

Association studies broadly fall into two categories:

 Family-based studies
e Case/control studies

Mixed designs are also possible.



Variation in resistance & susceptibility to disease
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Variation in resistance & susceptibility to disease
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effects (presumably for
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Family-based association analysis

Compare probands (e.g. cases) with other family

ranny Grandad Grandma Grandpa members’ SUCh aS parents'
Pros:
e Robust against potential confounding factors, such
Mymum |y dad as population structure or environmental effects.

e Great when looking for variants with big effects.
e e Extended family designs can go where other
. ) *
designs can’t("):

.

My brother My wife

Cons:
e Can be harder difficult to collect large samples.

My sons * For common variants / complex trait association
there is potentially reduced power (for equal
sample size)

(*) e.g. Kong et al, “Parental origin of sequence variants associated with complex diseases”, Nature 462 (2009)



Variation in resistance & susceptibility to disease
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Case/control association analysis

Compare disease-affected individuals (cases)
with unaffected individuals (controls).

Pros:
Large sample sizes can be realised =>
powered to detect small effects.

The general population Cons:
Potential confounding effects from
differential selection of cases and
controls — (e.g. cases and controls
should be ethnically matched
where possible).

Most of this course will focus on case/control designs.



What do we need to know to detect our effect?

Or what POWER do we have to detect an effect



A heuristic for statistical power

Power = how likely are we to find a real effect?

Power ~ N BZ f(1-f) r?

Effect size \ \

Allele frequency

Number of samples



Variation in resistance & susceptibility to disease
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Finding loci that influence disease

e Consider a position in the genome that shows variation
between individuals, for example ...

ATGAZC CGTA allele 1
ATGATC CGTA allele 2
e Each of the different variant forms is called an allele

e We are looking for alleles that are associated with high or
low risk of disease



Example: sickle and severe Malaria
Gambian data (MalariaGEN consortium)

Genotype
HbAA HbAS HbSS
(normal) sickle trait sickle cell disease

Severe malaria cases 2700
Population 3689 588 22

N =7047
f=0.07 (7%)



Example: sickle and severe Malaria
Gambian data (MalariaGEN consortium)

A

Severe malaria cafes 2700 13
Population 3689 22
P < 2x1016
Odds ratio =3689*35 / 2700 * 588 = 0.08 e.g. chisg.test in R

T

Individuals with AT (sickle) genotype have 10-fold lower
risk of malaria than those with TT (wild-type) genotype.



Genome-wide association analysis (GWAS) in a nutshell

Aim:

Find common variants influencing disease by performing this
test at millions of variants across the human genome.

Typical modern experiment: type 2.5M variants in thousands
of cases and thousands of population controls. Use
estimated genome-wide relationships to control for
population structure.

This design exploits linkage disequilibrium to assess variants

that are not directly typed. Key concept: linkage

disequilibrium



Genome-wide association (GWA) analysis in a nutshell

Amazingly, it works! E.g: 2,000 cases and 3,000 controls typed at 500k variants:

15
Crohn's disease
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“Genome-wide association study of 14,000 cases of seven common d/seases and 3,000 shared controls”
The Wellcome Trust Case Control Consortium Nature 447 (2007)



Genome-wide association (GWA) analysis in a nutshell

Amazingly, it works! E.g: 2,000 cases and 3,000 controls typed at 500k variants
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Genome-wide association (GWA) analysis in a nutshell

Amazingly, it works! E.g: 2,000 cases and 3,000 controls typed at 500k variants:
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“Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls”
The Wellcome Trust Case Control Consortium Nature 447 (2007)

Different diseases have different architectures:

Coronary artery disease
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“Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls”
The Wellcome Trust Case Control Consortium Nature 447 (2007)




Wellcome Trust Case Control Consortium

Discovery of a
common genetic
variant that affects
risk of coronary
artery disease
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Best SNP marker was rs1333049

e OR~ 1.47: one copy of the risk allele (present in half the
population) increases “risk” of coronary artery disease by ~50%

e two copies of risk allele (present in quarter of population)
almost doubles “risk” of coronary artery disease (OR 1.47 * 1.47)



Each population has a distinct pattern of genome variation
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GWAS in Africa

A number of factors make GWAS particularly challenging in
Africa.

e Genome diversity much higher in African than other
populations — more SNPs, more structure, more haplotypes.

e Low levels of LD...

e ..and differences in LD between populations means power
to detect untyped causal loci is reduced.

e A unique burden of infectious disease - the full story might
involve two or more genomes at once!



Malaria Genomic Epidemiology Network

Malaria

www.malariagen.net

e |Investigators in 16 malaria endemic countries: Burkina Faso,
Cambodia, Cameroon, Gambia, Ghana, Ghana, Kenya, Malawi, Mali,
Nigeria, Papua New Guinea, Senegal, Sudan, Tanzania, Thailand,
Vietham.

e ...and 6 non-endemic countries: France, Germany, ltaly, Sweden, UK,
USA

e Building a resource of DNA and clinical data from ~100,000 subjects
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Recruitment of 13,000 cases of severe malaria

Question: In communities where

every child is repeatedly infected

with malaria, why do some children die
and not others?

Malaria

Cases and controls from:

e Burkina Faso

e Cameroon

e Gambia

e Ghana (Navrongo)
e Ghana (Kumasi)

* Kenya

* Malawi

e Mali

* Nigeria

* Papua New Guinea
* Tanzania

* Vietham



Consistent effects despite phenotypic heterogeneity

Country

Gambia
Mali
Burkina Faso

Ghana (Navrongo)

Ghana (Kumasi)
Nigeria
Cameroon
Kenya
Tanzania

Malawi

All severe malaria

Malaria

Cases (n/N)

32/2542

4/453

21/865

19/6820

32/1495
9/77
32/621

57/2261
5/428

2/1388

213/10685

Cntls (n/N)

460/3332

28/344

73/729

50/484

271/2042
9/40
99/576

594/3941
75/452

132/2696

1791/14641

HbAS effect in severe malaria

Rockett et al. (2014) Nature Genetics 46: 1197

Sickle cell trait
Protective effect
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0.01 0.1 1 10
ODDS RATIO



Consistent effects despite phenotypic heterogeneity

Country

Gambia
Mali
Burkina Faso
Ghana (Navrongo)
Ghana (Kumasi)
Nigeria
Cameroon
Kenya
Tanzania
Malawi
Viethnam
Papua New Guinea

All severe malaria

Malaria

O blood group effect in severe malaria

Cases (O/total) Cntls (O/total)

1000/2345
130/445
321/854
263/674
548/1480
27/78
267/608
1061/2254
189/423
615/1414
272/788
139/385
4832/11948

1664/3624
143/336
326/729
227/556
992/1988
24/40
312/572
2131/3899
221/455
1298/2607
1000/2517
76/239
8414/17652

Rockett et al. (2014) Nature Genetics 46: 1197
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Attempt #1: GWAS of Severe Malaria
in Gambia (2009)

ARTICLES

nawre

genetics

Genome-wide and fine-resolution association analysis
of malaria in West Africa

Muminatou Jallow!?4, Yik Ying Teo?334, Kerrin § Small®?34, Kirk A Rockett>?, Panos Deloukas?,

Taane G Clark®?, Katja Kivinen?, Kalifa A Bojangl, David ] Conway, Margaret Pinder!, Giorgio Sirugo',
Fatou Sisay—]oofl, Stanley Usen!, Sarah Auburn®?, Suzannah J Bumpstead3, Susana Campin02'3,

Alison Coffeyj, Andrew Dunham?, Andrew E Fryz, Angela Green2, Rhian Gwilliam?, Sarah E Hunt?,
Michael Inouye3, Anna E ]effreysz, Alieu Mendyz, Aarno Palotie?, Simon Potter®, Jiannis Ragoussisz,
Jane Rogers3, Kate Rowlands?, Elilan Somaskantharajah®, Pamela Whittaker?, Claire Widden?,

Peter Donneﬂy2’4, Bryan Howie?, Jonathan Marchini®*, Andrew Morris?, Miguel San]oaquinz’s,

Eric Akum Achidi, Tsiri Agbenyega7, Angela Allen®?, Olukemi Amodu!®, Patrick Corranl!l,
Abdoulaye Djimdeu, Amagana Dolo!?, Ogobara K Doumbo!2, Chris Drakeley13’14, Sarah Dunstan!5,
Jennifer Evans”16, Jeremy Farrar!'3, Deepika Fernando!”, Tran Tinh Hien'®, Rolf D Horstmann'®,

Muntaser Ibrahim!8, Nadira Karunaweera!”, Gilbert Kokwaro!'?, Kwadwo A Koram?®, Martha Lemngezl,
Julie Makani?2, Kevin Marsh!?, Pascal Michon®, David Modiano??, Malcolm E Molyneuxs, Ivo Mueller®,
Michael Parker?4, Norbert Peshu!?, Christopher V Plowe2326, Qdile Puijalon27, John Reeder®,

Hugh Reyburn'3!4, Fleanor M Rﬂey13'14, Anavaj Sakuntabhai®’, Pratap Singhasivanonzs, Sodiomon Sirima??,
Adama Tall?°, Terrie E Taylor25’31, Mahamadou Thera!?, Marita Troye-Blomberg”, Thomas N Williams!?,
Michael Wilson?® & Dominic P Kwiatkowski®, Wellcome Trust Case Control Consortium?? &

Malaria Genomic Epidemiology Network??

Nature America, Inc. All rights reserved.

Malaria wellcomeiust



Importance of population structure

Principal components analysis

Gambia
e Within a 40 sq mile area of
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2005 o JoLA The Gambia we f-lnd
o o MANDINKA complex population structure
2 ® other
€ ® WOLLOF / . . .
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First principal component

MalariaGEN m’mtrUSt Jallow et al. (2009) Nature Genetics 41: 657



Importance of population structure

Cases

Controls

Genotype

Subpopulation A

[] aa

Subpopulation B

Cases

Controls



Importance of population structure

Subpopulation A Subpopulation B

Cases - ‘ . - Cases
]

Controls I ‘ Controls
S
I

2 =2.1 X‘163 X2=1.57
(p 0. 34) (p <0. 001) (p = 0.46)

Genotype [] aa O Aa



Importance of population structure

Quantile-quantile plot of chi-squared statistic comparing what
we observed versus what we’d expect if no disease association

Corrected by principal

Uncorrected .
components analysis
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= 25- w0
T
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Malaria mmtrUSt Jallow et al. (2009) Nature Genetics 41: 657



GWA studies of severe malaria
Study of 500,000 SNPs in 2,500 Gambian children

Jallow et al. (2009) Nature Genetics 41: 657

5 Sickle (P =3.9 x 1077

“[':'91[]('”}
it

4 -E > e ¥ - = .-

- . = <~ - : LY LA,

3. 52 LA DREPE B PRPive &

= < ) h_ > _
) n ' i i I
[}_

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617 1819202122
Chromosome

Low LD acts to attenuate GWA signals of association
e HbS signal is P=4x107 (causal variant P=1028)

e No signal at ABO

Malaria wellcomeiust



Malaria

Targetted resequencing

I I
I 1
I «rs334
I
12 - | :
I i |
10 ; :
I ]
8 - 1
iy : :
= | ] [}
o 67 [ awls o
_? - - i= rl - - -
4 . " | Iy .
; . I sy o ' .
29 . P - .'|: !:p Vi ‘e “4:-' )
",$ ::. - '..:..' "“ g" ...“‘- .'. --‘.=' .y
o Qe e R ATy ‘.‘ R T B AT ... .y -‘.'l“.-t-au..v PN et
@ . + i
5 4.8 4,9 5 0 5.1 '5,2 5.3 5.4 5.5 56 57
I i
g(—g H b bd H re L Lol HHe o o A oA B &Pk P o B “H™ i
2 = H——iH b b e e e be “ e T
T “ ‘e e e
= E [ 1 =+ 80
i 1. i
8; A A A * Lo d A n.. “LJP\H.‘ La L i ‘IﬂLh 1 0
T E—— S g
o _--="77 7 15334 e
125
rs11036711*
10
§ Novel SNP -
[y
R .rs11036238 .
o 67 d
o . .
T4 ) .-
- - ‘ - . - -
d = . . . e oMok L
2 <o - o e 3 . T F 2 SR oLy
0 - . . e '--,. .;:i - :. e f.- z . ._'..d ."- :.. . g 3 X . ..'. J_-._-:a
& 519 5.20 5.21 5.22 5.23 5.24 5.25 5.26 527 5.28
E “re . “ra i «a
1G] HBB: beta globin  HBG1: A-gamma globin HBET: epsilon globin  ORS57B4: olfactory receptor
= i 1
£ = HBD: delta globin  HBGZ2: G-gamma glabin
g3 80
g E ﬂ /ﬁ_ij
o o A i 0
T




Attempt #2: GWAS of severe malaria in three African populations
(Gambia, Kenya and Malawi) (2013).

e 5,000 cases and 7,000 controls from Gambia,
Kenya and Malawi.

 |Imputed to ~1.3M variants from the publically
available HapMap reference panel.

* Novel methods to allow for heterogeneity and
differences in haplotype background:
heterogeneity Bayes factors, and region-based
tests that take into account all variants in each
region.



Attempt #2: GWAS of severe malaria in three African populations
(Gambia, Kenya and Malawi) (2013).
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Control for the extensive structure
using a mixed model that takes into
account relatedness at all levels. (PCs
also used for comparison with similar

results.)

P values for correlation between the first 5 PCs and case/control status.

PC1 PC 2 PC3 PC 4 PC5
Gambia 1.35e-08 7.80e-05 0.00742 0.03446 6.44e-08
Malawi 1.37e-05 0.037366 0.047264 0.000541 0.846552
Kenya <2e-16 0.16672 3.72e-08 0.31626 0.00596

“Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations”, Band G,
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et al. PLoS Genetics (2013)



Attempt #2: GWAS of severe malaria in three African populations
(Gambia, Kenya and Malawi) (2013).

log1 BF) structured effects
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5000 cases and 7000 controls from Gambia, Kenya and Malawi.
Use of imputation into publically available reference set (HapMap) to assess
association at 1.3M variants.

Malaria

“Imputation-Based Meta-Analysis of Severe Malaria in Three African Populations”, Band G,

et al. PLoS Genetics (2013)



Attempt #2: GWAS of severe malaria in three African populations
(Gambia, Kenya and Malawi) (2013).

Meta-analysis of region of ABO
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Attempt #2: GWAS of severe malaria in three African populations
(Gambia, Kenya and Malawi) (2013).

Meta-analysis of region of HBB
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Attempt #2: GWAS of severe malaria in three African populations
(Gambia, Kenya and Malawi) (2013).

Region Chromosome Regional test Bayes factor
OR51F1 (HBB region) 11 > 1011 Sickle Signal
ABO 9 4920 O blood group signal
BET1L 11 319

C10orf57 10 243

MYOT 5 112

SMARCAS5 4 110

ATP2B4 1 103 Red cell calcium channel

LETTER

Genome-wide association study indicates two novel
resistance loci for severe malaria

Christian Timmann'?, Thorsten Thye', Maren Vens?, Jennifer Evans®™?, Jiirgen May®, Christa Ehmen’, Jiirgen Sievertsen’,
Birgit Muntau!, Gerd Ruge!, Wibke Loag®, Daniel Ansong®, Sampson Antwi’, Emanuel Asafo-Adjei’, Samuel Blay Nguah®,
Kingsley Osei Kwakye®, Alex Osei Yaw Akoto®, Justice Sylverken®, Michael Brendel"?, Kathrin Schuldt', Christina Loley?,
Andre Franke®, Christian G. Meyer!, Tsiri Agbenyega®, Andreas Ziegler? & Rolf D. Horstmann'

doi:10.1038/naturel1334




Attempt #3 (2015?): GWAS of severe malaria in eight populations
in sub-Saharan Africa

Approx. 10,000 cases and 10,000 controls (across 11 countries).

Typed at 2.5M variants and imputed up to 40M variants from
the phase 3 1000 Genomes reference panel.

Starting to find new loci. Some evidence that there are rarer,
bigger effects around, differing between populations.

Data is being made publically available — we have an ongoing
effort to develop web-based tools for data sharing.



GWAS Summary

 Power to detect association depends on
sample size, effect size, frequency, and density
of markers. Bigger is better!

e Careful QC and control for confounding factors
is essential.

* High diversity and patterns of LD make GWAS
in Africa particularly challenging.



GWAS : the hare and the tortoise?

Europe Africa
Level of LD high low
Variability of LD low high
Finding signals of association by
genome-wide SNP typing easy difficult

Localising causal variants
by genome sequencing difficult ?easy




Next-generation sequencing will transform
genome-wide association analysis

In the near term

e The 1000 Genomes Project is including 2 MalariaGEN study
sites (Gambia, Vietnam) in addition to at least 6 other African
populations.

e Other groups working to create Africa-specific reference panels
(e.g. AGVP, H3Africa).

e By combining GWAS data with population-specific sequence

data, we can boost signals of association and localise causal
variants.

In the longer term

e GWAS-by-sequencing will replace GWAS-by-SNP-typing.

e This will particularly benefit studies in Africa and multiethnic
studies.



What’s next?

As a warm-up for a full GWAS analysis later in the week, the next
practical shows you how to perform association analyses on
individual SNPs using R. (Based on MalariaGEN data.)
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