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A haplotype map of the human genome
The International HapMap Consortium*

Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a
public database of common variation in the human genome: more than one million single nucleotide polymorphisms
(SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations,
including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.
These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low
haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the
HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and
recombination, and identify loci that may have been subject to natural selection during human evolution.

Despite the ever-accelerating pace of biomedical research, the root
causes of common human diseases remain largely unknown, pre-
ventativemeasures are generally inadequate, and available treatments
are seldom curative. Family history is one of the strongest risk factors
for nearly all diseases—including cardiovascular disease, cancer,
diabetes, autoimmunity, psychiatric illnesses and many others—
providing the tantalizing but elusive clue that inherited genetic
variation has an important role in the pathogenesis of disease.
Identifying the causal genes and variants would represent an impor-
tant step in the path towards improved prevention, diagnosis and
treatment of disease.
More than a thousand genes for rare, highly heritable ‘mendelian’

disorders have been identified, in which variation in a single gene is
both necessary and sufficient to cause disease. Common disorders, in
contrast, have proven much more challenging to study, as they
are thought to be due to the combined effect of many different
susceptibility DNA variants interacting with environmental factors.
Studies of common diseases have fallen into two broad categories:

family-based linkage studies across the entire genome, and popu-
lation-based association studies of individual candidate genes.
Although there have been notable successes, progress has been slow
due to the inherent limitations of the methods; linkage analysis has
low power except when a single locus explains a substantial fraction
of disease, and association studies of one or a few candidate genes
examine only a small fraction of the ‘universe’ of sequence variation
in each patient.
A comprehensive search for genetic influences on disease would

involve examining all genetic differences in a large number of affected
individuals and controls. It may eventually become possible to
accomplish this by complete genome resequencing. In the meantime,
it is increasingly practical to systematically test common genetic
variants for their role in disease; such variants explain much of the
genetic diversity in our species, a consequence of the historically
small size and shared ancestry of the human population.
Recent experience bears out the hypothesis that common variants

have an important role in disease, with a partial list of validated
examples including HLA (autoimmunity and infection)1, APOE4
(Alzheimer’s disease, lipids)2, Factor VLeiden (deep vein thrombosis)3,
PPARG (encoding PPARg; type 2 diabetes)4,5, KCNJ11 (type 2

diabetes)6, PTPN22 (rheumatoid arthritis and type 1 diabetes)7,8,
insulin (type 1 diabetes)9,CTLA4 (autoimmune thyroid disease, type
1 diabetes)10, NOD2 (inflammatory bowel disease)11,12, complement
factor H (age-related macular degeneration)13–15 and RET (Hirsch-
sprung disease)16,17, among many others.
Systematic studies of common genetic variants are facilitated by

the fact that individuals who carry a particular SNP allele at one site
often predictably carry specific alleles at other nearby variant sites.
This correlation is known as linkage disequilibrium (LD); a particu-
lar combination of alleles along a chromosome is termed a haplotype.
LD exists because of the shared ancestry of contemporary chromo-

somes.When a new causal variant arises throughmutation—whether
a single nucleotide change, insertion/deletion, or structural altera-
tion—it is initially tethered to a unique chromosome on which it
occurred, marked by a distinct combination of genetic variants.
Recombination and mutation subsequently act to erode this associ-
ation, but do so slowly (each occurring at an average rate of about
1028 per base pair (bp) per generation) as compared to the number
of generations (typically 104 to 105) since the mutational event.
The correlations between causal mutations and the haplotypes on

which they arose have long served as a tool for human genetic
research: first finding association to a haplotype, and then sub-
sequently identifying the causal mutation(s) that it carries. This was
pioneered in studies of the HLA region, extended to identify causal
genes for mendelian diseases (for example, cystic fibrosis18 and
diastrophic dysplasia19), and most recently for complex disorders
such as age-related macular degeneration13–15.
Early information documented the existence of LD in the human

genome20,21; however, these studies were limited (for technical
reasons) to a small number of regions with incomplete data, and
general patterns were challenging to discern. With the sequencing of
the human genome and development of high-throughput genomic
methods, it became clear that the human genome generally
displays more LD22 than under simple population genetic models23,
and that LD is more varied across regions, and more segmentally
structured24–30, than had previously been supposed. These obser-
vations indicated that LD-based methods would generally have
great value (because nearby SNPs were typically correlated with
many of their neighbours), and also that LD relationships would
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The typical SNP is highly correlated with many of its neighbours.
The ENCODE data reveal that SNPs are typically perfectly correlated
to several nearby SNPs, and partially correlated to many others.
We use the term proxy to mean a SNP that shows a strong

correlation with one or more others. When two variants are perfectly
correlated, testing one is exactly equivalent to testing the other; we
refer to such collections of SNPs (with pairwise r2 ¼ 1.0 in the
HapMap samples) as ‘perfect proxy sets’.
Considering only common SNPs (the target of study for the

HapMap Project) in CEU in the ENCODE data, one in five SNPs
has 20 or more perfect proxies, and three in five have five or more.
In contrast, one in five has no perfect proxies. As expected, perfect
proxy sets are smaller in YRI, with twice as many SNPs (two in five)
having no perfect proxy, and a quarter as many (5%) having 20 or
more (Figs 11 and 12). These patterns are largely consistent across
the range of frequencies studied by the project, with a trend
towards fewer proxies at MAF , 0.10 (Fig. 11). Put another way,
the average common SNP in ENCODE is perfectly redundant with
three other SNPs in the YRI samples, and nine to ten other SNPs in
the other sample sets (Fig. 13).
Of course, to be detected through LD in an association study,

correlation need not be complete between the genotyped SNP and
the causal variant. For example, under a multiplicative disease model
and a single-locus x 2 test, the sample size required to detect
association to an allele scales as 1/r2. That is, if the causal SNP has
an r2 ¼ 0.5 to one tested in the disease study, full power can be
maintained if the sample size is doubled.
The number of SNPs showing such substantial but incomplete

correlation is much larger. For example, using a looser threshold for
declaring correlation (r2 $ 0.5), the average number of proxies
found for a common SNP in CHBþJPT is 43, and the average in
YRI is 16 (Fig. 12). These partial correlations can be exploited
through haplotype analysis to increase power to detect putative
causal alleles, as discussed below.
Evaluating performance of the Phase I map. To estimate the
proportion of all common SNPs captured by the Phase I map, we

Figure 10 | The relationship among recombination rates, haplotype lengths
and gene locations. Recombination rates in cMMb21 (blue). Non-
redundant haplotypes with frequency of at least 5% in the combined sample
(bars) and genes (black segments) are shown in an example gene-dense

region of chromosome 19 (19q13). Haplotypes are coloured by the number
of detectable recombination events they span, with red indicating many
events and blue few.

Figure 9 | The distribution of recombination events over the ENCODE
regions. Proportion of sequence containing a given fraction of all
recombination for the ten ENCODE regions (coloured lines) and combined
(black line). For each line, SNP intervals are placed in decreasing order of
estimated recombination rate46, combined across analysis panels, and the
cumulative recombination fraction is plotted against the cumulative
proportion of sequence. If recombination rates were constant, each line
would lie exactly along the diagonal, and so lines further to the right reveal
the fraction of regions where recombination is more strongly locally
concentrated.
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An integrated map of genetic variation
from 1,092 human genomes
The 1000 Genomes Project Consortium*

By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to
build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092
individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome
sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we
provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and
deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different
profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation,
which is further increased by the action of purifying selection. We show that evolutionary conservation and coding
consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially
across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites,
such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of
accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and
low-frequency variants in individuals from diverse, including admixed, populations.

Recent efforts to map human genetic variation by sequencing exomes1

and whole genomes2–4 have characterized the vast majority of com-
mon single nucleotide polymorphisms (SNPs) and many structural
variants across the genome. However, although more than 95% of
common (.5% frequency) variants were discovered in the pilot phase
of the 1000 Genomes Project, lower-frequency variants, particularly
those outside the coding exome, remain poorly characterized. Low-fre-
quency variants are enriched for potentially functional mutations, for
example, protein-changing variants, under weak purifying selection1,5,6.
Furthermore, because low-frequency variants tend to be recent in
origin, they exhibit increased levels of population differentiation6–8.
Characterizing such variants, for both point mutations and struc-
tural changes, across a range of populations is thus likely to identify
many variants of functional importance and is crucial for interpreting

individual genome sequences, to help separate shared variants from
those private to families, for example.

We now report on the genomes of 1,092 individuals sampled from
14 populations drawn from Europe, East Asia, sub-Saharan Africa
and the Americas (Supplementary Figs 1 and 2), analysed through a
combination of low-coverage (2–63) whole-genome sequence data,
targeted deep (50–1003) exome sequence data and dense SNP geno-
type data (Table 1 and Supplementary Tables 1–3). This design was
shown by the pilot phase2 to be powerful and cost-effective in dis-
covering and genotyping all but the rarest SNP and short insertion
and deletion (indel) variants. Here, the approach was augmented with
statistical methods for selecting higher quality variant calls from can-
didates obtained using multiple algorithms, and to integrate SNP,
indel and larger structural variants within a single framework (see

Table 1 | Summary of 1000 Genomes Project phase I data
Autosomes Chromosome X GENCODE regions*

Samples 1,092 1,092 1,092
Total raw bases (Gb) 19,049 804 327
Mean mapped depth (3) 5.1 3.9 80.3
SNPs

No. sites overall 36.7 M 1.3 M 498 K
Novelty rate{ 58% 77% 50%
No. synonymous/non-synonymous/nonsense NA 4.7/6.5/0.097 K 199/293/6.3 K
Average no. SNPs per sample 3.60 M 105 K 24.0 K

Indels
No. sites overall 1.38 M 59 K 1,867
Novelty rate{ 62% 73% 54%
No. inframe/frameshift NA 19/14 719/1,066
Average no. indels per sample 344 K 13 K 440

Genotyped large deletions
No. sites overall 13.8 K 432 847
Novelty rate{ 54% 54% 50%
Average no. variants per sample 717 26 39

NA, not applicable.
*Autosomal genes only.
{Compared with dbSNP release 135 (Oct 2011), excluding contribution from phase I 1000 Genomes Project (or equivalent data for large deletions).

*Lists of participants and their affiliations appear at the end of the paper.
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Box 1 and Supplementary Fig. 1). Because of the challenges of iden-
tifying large and complex structural variants and shorter indels in
regions of low complexity, we focused on conservative but high-quality
subsets: biallelic indels and large deletions.

Overall, we discovered and genotyped 38 million SNPs, 1.4 million
bi-allelic indels and 14,000 large deletions (Table 1). Several tech-
nologies were used to validate a frequency-matched set of sites to

assess and control the false discovery rate (FDR) for all variant types.
Where results were clear, 3 out of 185 exome sites (1.6%), 5 out of 281
low-coverage sites (1.8%) and 72 out of 3,415 large deletions (2.1%)
could not be validated (Supplementary Information and Supplemen-
tary Tables 4–9). The initial indel call set was found to have a high
FDR (27 out of 76), which led to the application of further filters,
leaving an implied FDR of 5.4% (Supplementary Table 6 and
Supplementary Information). Moreover, for 2.1% of low-coverage
SNP and 18% of indel sites, we found inconsistent or ambiguous
results, indicating that substantial challenges remain in characterizing
variation in low-complexity genomic regions. We previously described
the ‘accessible genome’: the fraction of the reference genome in which
short-read data can lead to reliable variant discovery. Through longer
read lengths, the fraction accessible has increased from 85% in the pilot
phase to 94% (available as a genome annotation; see Supplementary
Information), and 1.7 million low-quality SNPs from the pilot phase
have been eliminated.

By comparison to external SNP and high-depth sequencing data,
we estimate the power to detect SNPs present at a frequency of 1% in
the study samples is 99.3% across the genome and 99.8% in the con-
sensus exome target (Fig. 1a). Moreover, the power to detect SNPs at
0.1% frequency in the study is more than 90% in the exome and nearly
70% across the genome. The accuracy of individual genotype calls at
heterozygous sites is more than 99% for common SNPs and 95% for
SNPs at a frequency of 0.5% (Fig. 1b). By integrating linkage disequi-
librium information, genotypes from low-coverage data are as accurate
as those from high-depth exome data for SNPs with frequencies .1%.
For very rare SNPs (#0.1%, therefore present in one or two copies),
there is no gain in genotype accuracy from incorporating linkage dis-
equilibrium information and accuracy is lower. Variation among
samples in genotype accuracy is primarily driven by sequencing depth
(Supplementary Fig. 3) and technical issues such as sequencing plat-
form and version (detectable by principal component analysis; Sup-
plementary Fig. 4), rather than by population-level characteristics.
The accuracy of inferred haplotypes at common SNPs was estimated
by comparison to SNP data collected on mother–father–offspring trios
for a subset of the samples. This indicates that a phasing (switch) error is
made, on average, every 300–400 kilobases (kb) (Supplementary Fig. 5).

A key goal of the 1000 Genomes Project was to identify more than
95% of SNPs at 1% frequency in a broad set of populations. Our
current resource includes ,50%, 98% and 99.7% of the SNPs with
frequencies of ,0.1%, 1.0% and 5.0%, respectively, in ,2,500 UK-
sampled genomes (the Wellcome Trust-funded UK10K project), thus

BOX 1

Constructing an integrated map of
variation
The 1,092 haplotype-resolved genomes released as phase I by the
1000 Genomes Project are the result of integrating diverse data from
multiple technologiesgeneratedbyseveral centresbetween2008and
2010. The Box 1 Figure describes the process leading from primary
data production to integrated haplotypes.

a, Unrelated individuals (see Supplementary Table 10 for exceptions) were
sampled in groups of up to 100 from related populations (Wright’s FST

typically ,1%) within broader geographical or ancestry-based groups2.
Primary data generated for each sample consist of low-coverage (average 53)
whole-genome and high-coverage (average 803 across a consensus target of
24 Mb spanning more than 15,000 genes) exome sequence data, and high
density SNP array information. b, Following read-alignment, multiple
algorithms were used to identify candidate variants. For each variant, quality
metrics were obtained, including information about the uniqueness of the
surrounding sequence (for example, mapping quality (map. qual.)), the
quality of evidence supporting the variant (for example, base quality (base.
qual.) and the position of variant bases within reads (read pos.)), and the
distribution of variant calls in the population (for example, inbreeding
coefficient). Machine-learning approaches using this multidimensional
information were trained on sets of high-quality known variants (for
example, the high-density SNP array data), allowing variant sites to be ranked
in confidence and subsequently thresholded to ensure low FDR. c, Genotype
likelihoods were used to summarize the evidence for each genotype at bi-
allelic sites (0, 1 or 2 copies of the variant) in each sample at every site. d, As
the evidence for a single genotype is typically weak in the low-coverage data,
and can be highly variable in the exome data, statistical methods were used to
leverage information from patterns of linkage disequilibrium, allowing
haplotypes (and genotypes) to be inferred.
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Figure 1 | Power and accuracy. a, Power to detect SNPs as a function of
variant count (and proportion) across the entire set of samples, estimated by
comparison to independent SNP array data in the exome (green) and whole
genome (blue). b, Genotype accuracy compared with the same SNP array data
as a function of variant frequency, summarized by the r2 between true and
inferred genotype (coded as 0, 1 and 2) within the exome (green), whole
genome after haplotype integration (blue), and whole genome without
haplotype integration (red). LD, linkage disequilibrium; WGS, whole-genome
sequencing.
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The African Genome Variation Project
shapes medical genetics in Africa
Deepti Gurdasani1,2*, Tommy Carstensen1,2*, Fasil Tekola-Ayele3*, Luca Pagani1,4*, Ioanna Tachmazidou1*,
Konstantinos Hatzikotoulas1, Savita Karthikeyan1,2, Louise Iles1,2,5, Martin O. Pollard1, Ananyo Choudhury6,
Graham R. S. Ritchie1,7, Yali Xue1, Jennifer Asimit1, Rebecca N. Nsubuga8, Elizabeth H. Young1,2, Cristina Pomilla1,2, Katja Kivinen1,
Kirk Rockett9, Anatoli Kamali8, Ayo P. Doumatey3, Gershim Asiki8, Janet Seeley8, Fatoumatta Sisay-Joof10, Muminatou Jallow10,
Stephen Tollman11,12, Ephrem Mekonnen13, Rosemary Ekong14, Tamiru Oljira15, Neil Bradman16, Kalifa Bojang10,
Michele Ramsay6,17,18, Adebowale Adeyemo3, Endashaw Bekele19, Ayesha Motala20, Shane A. Norris21, Fraser Pirie20,
Pontiano Kaleebu8, Dominic Kwiatkowski1,9, Chris Tyler-Smith11, Charles Rotimi31, Eleftheria Zeggini11
& Manjinder S. Sandhu1,21

Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African
genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement
and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents
dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa.
Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture
across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and
hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing
genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in
sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy,
strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient
genotype array design capturing common genetic variation in Africa.

Globally, human populations show structured genetic diversity as a
result of geographical dispersion, selection and drift. Understanding
this variation can provide insights into evolutionary processes that
shape both human adaptation and variation in disease susceptibility1.
Although the Hapmap Project2 and the 1000 Genomes Project3 have
greatly enhanced our understanding of genetic variation globally, the
characterization of African populations remains limited. Other efforts
examining African genetic diversity have been limited by variant density
and sample sizes in individual populations4, or have focused on isolated
groups, such as hunter gatherers (HG)5,6, limiting relevance to more
widespread populations across Africa.

The African Genome Variation Project (AGVP) is an international
collaboration that expands on these efforts by systematically assessing
genetic diversity among 1,481 individuals from 18 ethno-linguistic groups
from sub-Saharan Africa (SSA) (Fig. 1 and Supplementary Methods
Tables 1 and 2) with the HumanOmni2.5M genotyping array and whole-
genome sequences (WGS) from 320 individuals (Supplementary

Methods Table 2). Importantly, the AGVP has evolved to help develop
local resources for public health and genomic research, including strength-
ening research capacity, training, and collaboration across the region.
We envisage that data from this project will provide a global resource
for researchers, as well as facilitate genetic studies in Africa7.

Population structure in SSA
On examining ,2.2 million variants, we found modest differentiation
among SSA populations (mean pairwise FST 0.019) (Supplementary
Methods and Supplementary Table 1). Differentiation among the Niger-
Congo language groups—the predominant linguistic grouping across
Africa was noted to be modest (mean pairwise FST 0.009) (Supplemen-
tary Table 1), providing evidence for the ‘Bantu expansion’—a recent
population expansion and movement throughout SSA originating in
West Africa around 3,000 to 5,000 years ago8.

We identified 29.8 million single-nucleotide polymorphisms (SNPs)
from Ethiopian, Zulu and Bagandan WGS (Extended Data Fig. 1 and
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Imputation-Based Meta-Analysis of Severe Malaria in
Three African Populations
Gavin Band1, Quang Si Le1, Luke Jostins2, Matti Pirinen1, Katja Kivinen2, Muminatou Jallow3,4,
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Abstract

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype
imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in
populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where
genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from
approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa.
Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes
are large, and that modern methods for association analysis can control the potential confounding effects of population
structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due
to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis
that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP–based fixed effect analysis; we
apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a
region-based test to allow for heterogeneity in the location of causal alleles.
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Introduction

Severe malaria, meaning life-threatening complications of

Plasmodium falciparum infection, kills on the order of a million

African children each year [1]. However this represents only a

small proportion of the total number of infected individuals, the

majority of whom recover without life-threatening complications.

Understanding the genetic basis of resistance to severe malaria

could provide valuable insights into molecular mechanisms of

pathogenesis and protective immunity that will aid the develop-

ment of treatments and vaccines. It might also identify selective

pressures that have shaped human physiology and susceptibility to

other common diseases, because of the historical impact of malaria

as a major cause of mortality in ancestral human populations.

Genome-wide association studies (GWAS) have identified

thousands of genetic variants which predispose individuals to

particular disease phenotypes. However, the vast majority of these

studies are of non-communicable disease in collections of
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Many human genetic associations with resistance to malaria have been reported, but few have been reliably replicated. We 
collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in 
Africa, Asia and Oceania. We tested 55 SNPs in 27 loci previously reported to associate with severe malaria. There was evidence 
of association at P < 1 × 10−4 with the HBB, ABO, ATP2B4, G6PD and CD40LG loci, but previously reported associations at 
22 other loci did not replicate in the multicenter analysis. The large sample size made it possible to identify authentic genetic 
effects that are heterogeneous across populations or phenotypes, with a striking example being the main African form of G6PD 
deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anemia. The finding that G6PD 
deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of 
this common human genetic disorder are more complex than previously supposed.

It was recognized over half a century ago that malaria has been a major 
force of evolutionary selection on the human genome and that cer-
tain hematological disorders have risen to high frequency in malaria-
endemic areas because they reduce the risk of death due to malaria1–3. 
Sickle hemoglobin (HbS) and glucose-6-phosphate dehydrogenase 
(G6PD) deficiency are often-quoted examples of natural selection 
due to malaria, and many other genetic associations with resistance 
or susceptibility to malaria have been reported2–9. However, the cur-
rent literature contains many conflicting lines of evidence based on 
relatively small studies whose results have not been independently 
replicated.

To address this problem, we conducted a large multicenter case-
control study of severe malaria across 12 locations in Burkina Faso, 
Cameroon, The Gambia, Ghana, Kenya, Malawi, Mali, Nigeria, 
Tanzania, Vietnam and Papua New Guinea (Supplementary Fig. 1 
and Supplementary Table 1). The structure of this consortial project 
has been described elsewhere10, and information about each of the 
partner studies can be found on the Malaria Genomic Epidemiology 
Network (MalariaGEN) website (see URLs). We used the World 
Health Organization (WHO) definition of severe malaria, which com-
prises a broad spectrum of life-threatening clinical complications of 
P. falciparum infection11–15. In this report, we examine genetic asso-
ciations with severe malaria in general and with two distinct clinical 
forms of severe malaria: cerebral malaria with a Blantyre coma score 
of less than 3 and severe malarial anemia with a hemoglobin level of 
less than 5 g/dl or a hematocrit level of less than 15%.

RESULTS
Samples and clinical data
The first stage of work was to collect standardized clinical data on 
severe malaria from multiple locations (Supplementary Table 2). 

This effort presented many practical challenges, as severe malaria is 
an acute illness that mainly occurs in resource-poor settings where 
laboratory facilities are limited and medical records can be unreliable. 
It was necessary to allow for variations in the design and implemen-
tation of the study in different settings, with study characteristics 
depending on a range of local circumstances. Investigators at different  
sites agreed at the outset on principles for sharing data and on  
standardized clinical definitions, and they also worked together to 
define best ethical practices across different local settings, including 
the development of guidelines for informed consent10,16,17. A set of 
web tools was developed to enable investigators to curate data in their 
locally used format before transforming them to the standardized 
format necessary for data from different sites to be merged.

After data curation and quality control (Online Methods), 11,890 
cases of severe malaria and 17,441 controls were included for analysis 
(Table 1 and Supplementary Table 3). Controls were intended to be 
representative of the populations to which the cases belonged; that 
is, a minority of controls may have subsequently gone on to develop 
severe malaria. The ancestry composition of the cases and controls 
at each location is shown in Supplementary Table 4. A total of 6,283 
cases had cerebral malaria or severe malarial anemia, of which 3,345 
had cerebral malaria only, 2,196 had severe malarial anemia only and 
742 had both cerebral malaria and severe malarial anemia (Table 1). 
A further 5,607 cases did not have cerebral malaria or severe malarial 
anemia according to the criteria used here but satisfied the WHO 
definition of severe malaria, which includes a range of other clinical 
complications such as acidosis, respiratory distress and hypoglycemia 
that are not explored in detail in the present analysis11.

Most of the cases of severe malaria were young children, with 
median ages ranging from 1.3 to 3.8 years at different study sites, 
except in Vietnam where most cases were young adults with a median 
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ATP2B4. The ATP2B4 gene, encoding a calcium transporter found  
in the plasma membrane of erythrocytes, has been identified by  
genome-wide association study (GWAS) as a malaria resistance locus26. 
We typed four SNPs in this gene that were found to be in LD; the derived 
alleles of rs10900585 and rs55868763 were associated with increased risk 
of severe malaria, whereas the derived alleles of rs4951074 and rs1541255 
were associated with decreased risk (Table 2 and Supplementary  
Tables 8–10 and 18). When aggregated across all African sites,  
individuals carrying at least one copy of the derived allele at rs10900585 
had an OR of 1.32 for severe malaria (P = 1.7 × 10−9), whereas individu-
als homozygous for the derived allele at rs4951074 had an OR of 0.77  
(P = 7.6 × 10−7). In both cases, the magnitude of the genetic effect  
was similar for cerebral malaria and severe malarial anemia (Fig. 1).

CD40LG. The CD40LG gene is a gene on the X chromosome  
encoding CD40 ligand that has previously been associated with  
severe malaria27. Homozygotes for the derived allele of a SNP in the  
5′ UTR (rs3092945) showed reduced risk of severe malaria (OR = 0.85;  
P = 1.1 × 10−6), with a similar trend of protection in both males  
(OR = 0.90; P = 0.01) and females (OR = 0.78; P = 8.9 × 10−5) when the 
data were aggregated across sites (Table 3). However, when sites were 
analyzed individually, the results were strikingly different between 
sites: homozygotes for the derived allele showed significantly reduced 
risk of severe malaria in The Gambia (OR = 0.54; P = 2.3 × 10−22) 
but significantly increased risk in Kenya (OR = 1.42; P = 7.8 × 10−6) 
(Supplementary Table 19).

Other loci. None of the other loci tested here showed consistent 
evidence of association with severe malaria in the multicenter analysis 
with a significance of P < 1 × 10−4. All variants tested, some of which 

had weak associations that merit further investigation, are shown in 
Supplementary Figure 3 and Supplementary Tables 8–10. At the 
CD36 locus, heterozygotes for the codon variant rs201346212 tended 
to have reduced risk of severe malaria (OR = 0.67; P = 4.2 × 10−4). 
Other weak signals of association (P values in the range of 0.05 to 
0.001) were observed for CD36, IL1A and IRF1 with severe malaria 
overall, for CR1 and IL4 with cerebral malaria and for IL20RA with 
severe malarial anemia. Although it is clear from these data that many 
genetic associations reported in the literature might have been false 
positives, as has been observed for other common diseases28, it is 
undoubtedly also the case that authentic genetic associations might 
be missed by multicenter studies if the effect is weak and there is 
heterogeneity of effect across different study sites.

Epistasis between significantly associated loci
Epistasis between malaria resistance loci has been reported in previ-
ous studies29,30. We therefore tested for pairwise interaction between 
all SNPs that showed significant association at the HBB, ABO, G6PD, 
ATP2B4 and CD40LG loci (Supplementary Fig. 4 and Supplementary 
Table 20). This analysis did not identify any strong evidence of inter-
action, but a marginally significant effect was observed between the 
ATP2B4 locus (rs10900585) and the allele for HbC (rs33930165;  
P = 1.3 × 10−3), such that the ancestral allele of rs10900585, which 
was the minor allele in Africa, tended to reverse the protective effect 
of the HbC allele. This association warrants further investigation,  
as ATP2B4 encodes the major erythrocyte calcium channel and  
intracellular calcium levels have been noted to affect the clinical  
phenotype of sickling disorders31.

HBB rs334

The Gambia
Mali

Burkina Faso
Ghana (Navrongo)

Ghana (Kumasi)
Nigeria

Cameroon
Kenya

Tanzania
Malawi

Vietnam
Papua New Guinea

All

0.01 0.05 0.20 0.50 2.00
OR and 95% CI

ABO rs8176719

0.2 0.5 1.0 2.0
OR and 95% CI

ATP2B4 rs10900585

0.2 0.5 1.0 2.0
OR and 95% CI

G6PD rs1050828

The Gambia
Mali

Burkina Faso
Ghana (Navrongo)

Ghana (Kumasi)
Nigeria

Cameroon
Kenya

Tanzania
Malawi

Vietnam
Papua New Guinea

All

0.2 0.5 1.0 2.0
OR and 95% CI

CD40LG rs3092945

0.2 0.5 1.0 2.0
OR and 95% CI

Cerebral malaria
Severe malarial anemia

Figure 1 Forest plots for association with  
severe malaria and subphenotypes.  
ORs and 95% CIs (gray bars) are shown  
for the sickle cell trait (rs334,  
heterozygote model), blood group O  
(rs8176719, recessive model), ATP2B4  
(rs10900585, dominant model), G6PD  
deficiency (rs1050828, additive model)  
and CD40LG (rs3092945, recessive  
model) for association with cerebral  
malaria (red circles) and severe malarial  
anemia (blue circles) in all individuals  
combined. Results are adjusted for sex,  
ancestry and (with the exception of rs334)  
the sickle cell trait. Results are not presented  
when the sample size was too small (fewer than five cases or controls with the relevant genotype) or for locations where the derived allele was absent. 
Further details are available in supplementary tables 11–19. OR = 1, representing no effect, is highlighted by the vertical dashed lines.
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Genome-wide association study of 14,000
cases of seven common diseases and
3,000 shared controls
The Wellcome Trust Case Control Consortium*

There is increasing evidence that genome-wide association (GWA) studies represent a powerful approach to the
identification of genes involved in common human diseases. We describe a joint GWA study (using the Affymetrix GeneChip
500K Mapping Array Set) undertaken in the British population, which has examined ,2,000 individuals for each of 7 major
diseases and a shared set of ,3,000 controls. Case-control comparisons identified 24 independent association signals at
P , 5 3 1027: 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn’s disease, 3 in rheumatoid arthritis, 7 in type 1
diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these
signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found
compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a
large number of further signals (including 58 loci with single-point P values between 1025 and 5 3 1027) likely to yield
additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes
observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also
demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of
multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the
British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population
stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology
of these important disorders. We anticipate that our data, results and software, which will be widely available to other
investigators, will provide a powerful resource for human genetics research.

Despite extensive research efforts for more than a decade, the genetic
basis of common human diseases remains largely unknown. Although
there have been some notable successes1, linkage and candidate gene
association studies have often failed to deliver definitive results. Yet
the identification of the variants, genes and pathways involved in
particular diseases offers a potential route to new therapies, improved
diagnosis and better disease prevention. For some time it has been
hoped that the advent of genome-wide association (GWA) studies
would provide a successful new tool for unlocking the genetic basis
of many of these common causes of human morbidity and mortality1.

Three recent advances mean that GWA studies that are powered to
detect plausible effect sizes are now possible2. First, the International
HapMap resource3, which documents patterns of genome-wide vari-
ation and linkage disequilibrium in four population samples, greatly
facilitates both the design and analysis of association studies. Second,
the availability of dense genotyping chips, containing sets of hundreds of
thousands of single nucleotide polymorphisms (SNPs) that provide
good coverage of much of the human genome, means that for the first
time GWA studies for thousands of cases and controls are technically and
financially feasible. Third, appropriately large and well-characterized
clinical samples have been assembled for many common diseases.

The Wellcome Trust Case Control Consortium (WTCCC) was
formed with a view to exploring the utility, design and analyses of
GWA studies. It brought together over 50 research groups from the
UK that are active in researching the genetics of common human
diseases, with expertise ranging from clinical, through genotyping, to

informatics and statistical analysis. Here we describe the main experi-
ment of the consortium: GWA studies of 2,000 cases and 3,000 shared
controls for 7 complex human diseases of major public health import-
ance—bipolar disorder (BD), coronary artery disease (CAD), Crohn’s
disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1
diabetes (T1D), and type 2 diabetes (T2D). Two further experiments
undertaken by the consortium will be reported elsewhere: a GWA
study for tuberculosis in 1,500 cases and 1,500 controls, sampled from
The Gambia; and an association study of 1,500 common controls with
1,000 cases for each of breast cancer, multiple sclerosis, ankylosing
spondylitis and autoimmune thyroid disease, all typed at around
15,000 mainly non-synonymous SNPs. By simultaneously studying
seven diseases with differing aetiologies, we hoped to develop insights,
not only into the specific genetic contributions to each of the diseases,
but also into differences in allelic architecture across the diseases. A
further major aim was to address important methodological issues of
relevance to all GWA studies, such as quality control, design and ana-
lysis. In addition to our main association results, we address several of
these issues below, including the choice of controls for genetic studies,
the extent of population structure within Great Britain, sample sizes
necessary to detect genetic effects of varying sizes, and improvements in
genotype-calling algorithms and analytical methods.

Samples and experimental analyses

Individuals included in the study were living within England,
Scotland and Wales (‘Great Britain’) and the vast majority had

*Lists of participants and affiliations appear at the end of the paper.
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Methods), and excluded 153 individuals on this basis. We next
looked for evidence of population heterogeneity by studying allele
frequency differences between the 12 broad geographical regions
(defined in Supplementary Fig. 4). The results for these 11-d.f. tests
and associated quantile-quantile plots are shown in Fig. 2. Wide-
spread small differences in allele frequencies are evident as an
increased slope of the line (Fig. 2b); in addition, a few loci show much
larger differences (Fig. 2a and Supplementary Fig. 6).

Thirteen genomic regions showing strong geographical variation
are listed in Table 1, and Supplementary Fig. 7 shows the way in which
their allele frequencies vary geographically. The predominant pattern
is variation along a NW/SE axis. The most likely cause for these
marked geographical differences is natural selection, most plausibly
in populations ancestral to those now in the UK. Variation due to
selection has previously been implicated at LCT (lactase) and major
histocompatibility complex (MHC)7–9, and within-UK differentiation
at 4p14 has been found independently10, but others seem to be new
findings. All but three of the regions contain known genes. Aside from

evolutionary interest, genes showing evidence of natural selection are
particularly interesting for the biology of traits such as infectious dis-
eases; possible targets for selection include NADSYN1 (NAD synthe-
tase 1) at 11q13, which could have a role in prevention of pellagra, as
well as TLR1 (toll-like receptor 1) at 4p14, for which a role in the
biology of tuberculosis and leprosy has been suggested10.

There may be important population structure that is not well
captured by current geographical region of residence. Present
implementations of strongly model-based approaches such as
STRUCTURE11,12 are impracticable for data sets of this size, and we
reverted to the classical method of principal components13,14, using a
subset of 197,175 SNPs chosen to reduce inter-locus linkage disequi-
librium. Nevertheless, four of the first six principal components
clearly picked up effects attributable to local linkage disequilibrium
rather than genome-wide structure. The remaining two components
show the same predominant geographical trend from NW to SE but,
perhaps unsurprisingly, London is set somewhat apart (Supplemen-
tary Fig. 8).

The overall effect of population structure on our association
results seems to be small, once recent migrants from outside
Europe are excluded. Estimates of over-dispersion of the association
trend test statistics (usually denoted l; ref. 15) ranged from 1.03 and
1.05 for RA and T1D, respectively, to 1.08–1.11 for the remaining
diseases. Some of this over-dispersion could be due to factors other
than structure, and this possibility is supported by the fact that inclu-
sion of the two ancestry informative principal components as cov-
ariates in the association tests reduced the over-dispersion estimates
only slightly (Supplementary Table 6), as did stratification by geo-
graphical region. This impression is confirmed on noting that
P values with and without correction for structure are similar
(Supplementary Fig. 9). We conclude that, for most of the genome,
population structure has at most a small confounding effect in our
study, and as a consequence the analyses reported below do not
correct for structure. In principle, apparent associations in the few
genomic regions identified in Table 1 as showing strong geographical
differentiation should be interpreted with caution, but none arose in
our analyses.

Disease association results

We assessed evidence for association in several ways (see Methods for
details), drawing on both classical and bayesian statistical approaches.
For polymorphic SNPs on the Affymetrix chip, we performed trend
tests (1 degree of freedom16) and general genotype tests (2 degrees of
freedom16, referred to as genotypic) between each case collection and
the pooled controls, and calculated analogous Bayes factors. There
are examples from animal models where genetic effects act differently
in males and females17, and to assess this in our data we applied a
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Figure 2 | Genome-wide picture of geographic variation. a, P values for the
11-d.f. test for difference in SNP allele frequencies between geographical
regions, within the 9 collections. SNPs have been excluded using the project
quality control filters described in Methods. Green dots indicate SNPs with a
P value ,1 3 1025. b, Quantile-quantile plots of these test statistics. SNPs at
which the test statistic exceeds 100 are represented by triangles at the top of
the plot, and the shaded region is the 95% concentration band (see
Methods). Also shown in blue is the quantile-quantile plot resulting from
removal of all SNPs in the 13 most differentiated regions (Table 1).

Table 1 | Highly differentiated SNPs

Chromosome Genes Region (Mb) SNP Position P value

2q21 LCT 135.16–136.82 rs1042712 136,379,576 5.54 3 10
213

4p14 TLR1, TLR6, TLR10 38.51–38.74 rs7696175 386,43,552 1.51 3 10
212

4q28 137.97–138.01 rs1460133 137,999,953 4.43 3 10
208

6p25 IRF4 0.32–0.42 rs9378805 362,727 5.39 3 10
213

6p21 HLA 31.10–31.55 rs3873375 31,359,339 1.07 3 10
211

9p24 DMRT1 0.86–0.88 rs11790408 866,418 4.96 3 10
207

11p15 NAV2 19.55–19.70 rs12295525 19,661,808 7.44 3 10
208

11q13 NADSYN1, DHCR7 70.78–70.93 rs12797951 70,820,914 3.01 3 10
208

12p13 DYRK4,AKAP3,NDUFA9,
RAD51AP1,GALNT8

4.37–4.82 rs10774241 45,537,27 2.73 3 10
208

14q12 HECTD1,AP4S1,STRN3 30.41–31.03 rs17449560 30,598,823 1.46 3 10
207

19q13 GIPR,SNRPD2,QPCTL,
SIX5,DMPK,DMWD,

RSHL1,SYMPK,FOXA3

50.84–51.09 rs3760843 50,980,546 4.19 3 10
207

20q12 38.30–38.77 rs2143877 38,526,309 1.12 3 10
209

Xp22 2.06–2.08 rs6644913 2,061,160 1.23 3 10
207

Properties of SNPs that show large allele frequency differences between samples of individuals from 12 regions across Great Britain. Regions showing differentiated SNPs are given with details of the
SNP with the smallest P value in each region for differentiation on the 11-d.f. test of differences in SNP allele frequencies between geographical regions, within the 9 collections. Cluster plots for these
SNPs have been examined visually. Signal plots appear in Supplementary Information. Positions are in NCBI build-35 coordinates.
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