Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>Several emerging pathogens have arisen as a result of selection pressures exerted by modern healthcare. <jats:italic>Klebsiella quasipneumoniae</jats:italic> was recently defined as a new species, yet its prevalence, niche, and propensity to acquire antimicrobial resistance genes are not fully described. We have been tracking inter- and intra-species transmission of the <jats:italic>Klebsiella quasipneumoniae</jats:italic> carbapenemase (KPC) gene, <jats:italic>bla</jats:italic><jats:sub>KPC</jats:sub>, between bacteria isolated from a single institution. We applied a combination of Illumina and PacBio whole-genome sequencing to identify and compare K. quasipneumoniae from patients and the hospital environment over 10 and five-year periods respectively. There were 32 bla<jats:sub>KPC</jats:sub>-positive <jats:italic>K. quasipneumoniae</jats:italic> isolates, all of which were identified as <jats:italic>K. pneumoniae</jats:italic> in the clinical microbiology laboratory, from eight patients and 11 sink drains, with evidence for seven separate <jats:italic>bla</jats:italic><jats:sub>KPC</jats:sub> plasmid acquisitions. Analysis of a single subclade of <jats:italic>K. quasipneumoniae</jats:italic> subspecies <jats:italic>quasipneumoniae</jats:italic> (n=23 isolates) from three patients and six rooms demonstrated seeding of a sink by a patient, subsequent persistence of the strain in the hospital environment, and then probable transmission to another patient. Longitudinal analysis of this strain demonstrated the acquisition of two unique <jats:italic>bla</jats:italic><jats:sub>KPC</jats:sub> plasmids and then subsequent within-strain genetic rearrangement through transposition and homologous recombination. Our analysis highlights the apparent molecular propensity of <jats:italic>K. quasipneumoniae</jats:italic> to persist in the environment as well as acquire carbapenemase plasmids from other species and enabled an assessment of the genetic rearrangements which may facilitate horizontal transmission of carbapenemases.</jats:p>

Original publication

DOI

10.1101/486753

Type

Journal article

Publisher

Cold Spring Harbor Laboratory

Publication Date

05/12/2018