Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundImpaired DNA repair capacity may favorably affect survival in cisplatin/gemcitabine-treated non-small-cell lung cancer (NSCLC) patients. We investigated the association of survival with genetic polymorphisms in X-ray repair cross-complementing group 1 and group 3 (XRCC3), xeroderma pigmentosum group D (XPD), excision repair cross-complementing group 1, ligase IV, ribonucleotide reductase, TP53, cyclooxygenase-2, interleukin-6, peroxisome proliferator-activated receptor gamma, epidermal growth factor, methylene-tetra-hydrofolate reductase and methionine synthase.Patients and methodsOne hundred and thirty-five stage IV or IIIB (with malignant pleural effusion) NSCLC patients treated with cisplatin/gemcitabine from different hospitals of the Spanish Lung Cancer Group were genotyped for 14 different polymorphisms in 13 genes. Polymorphisms were detected by the TaqMan method, using genomic DNA extracted from baseline blood samples.ResultsMedian survival was significantly increased in patients harboring XRCC3 241 MetMet: 16 months versus 10 months for patients with ThrMet and 14 months for those with ThrThr (P = 0.01). The risk of death ratio was significantly lower for MetMet than for ThrMet patients (hazard ratio, 0.43; P = 0.01). In the multivariate Cox model, XRCC3 241 remained an independent prognostic factor (hazard ratio: XRCC3 241 MetMet, 0.44; P = 0.01), and XPD 751 and XRCC1 399 also emerged as significant prognostic factors (hazard ratios: XPD 751 LysGln, 0.46, P = 0.03; XRCC1 399 ArgGln, 0.61, P = 0.04). No other association was observed between genotype and survival.ConclusionXRCC3 241 MetMet is an independent determinant of favorable survival in NSCLC patients treated with cisplatin/gemcitabine. A simple molecular assay to determine the XRCC3 241 genotype can be useful for customizing chemotherapy.

Original publication

DOI

10.1093/annonc/mdj135

Type

Journal article

Journal

Annals of oncology : official journal of the European Society for Medical Oncology

Publication Date

04/2006

Volume

17

Pages

668 - 675

Addresses

Hospital Provincial de Castellón, Castellón, Spain.

Keywords

Spanish Lung Cancer Group, Humans, Carcinoma, Non-Small-Cell Lung, Lung Neoplasms, Cisplatin, Deoxycytidine, Antineoplastic Combined Chemotherapy Protocols, Survival Analysis, DNA Repair, Genotype, Polymorphism, Genetic