Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent developments in genotyping technologies coupled with the growing desire to characterize genome variation in Anopheles populations open the opportunity to develop more effective genotyping strategies for high-throughput screening. A major bottleneck of this goal is nucleic acid extraction. Here, we examined the feasibility of using intact portions of a mosquito's leg as sources of template DNA for whole-genome amplification (WGA) by primer-extension preamplification. We used the Agena Biosciences MassARRAY(®) platform (formerly Sequenom) to genotype 78 SNPs for 265 WGA leg samples. We performed nucleic acid extraction on 36 mosquito carcasses and compared the genotype call concordance with their corresponding legs and observed full concordance. Using three legs instead of one improved genotyping success rates (96% vs. 89%, respectively), although this difference was not significant. We provide a proof of concept that WGA reactions can be performed directly on mosquito legs, thereby eliminating the need to extract nucleic acid. This approach is straightforward and sensitive and allows both species determination and genotyping of Anopheles mosquitoes to be performed in a high-throughput manner. Our protocol also leaves the mosquito body intact facilitating other experimental analysis to be undertaken on the same sample. Based on our findings, this method would also be suitable for use with other insect species.

Original publication

DOI

10.1111/1755-0998.12473

Type

Journal article

Journal

Molecular ecology resources

Publication Date

03/2016

Volume

16

Pages

480 - 486

Addresses

Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.

Keywords

Extremities, Animals, Anopheles, Sequence Analysis, DNA, Polymorphism, Single Nucleotide, Genetic Variation, Genotyping Techniques