Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Characterizing the genome of mature virions is pivotal to understanding the highly dynamic processes of virus assembly and infection. Owing to the different cellular fates of DNA and RNA, the life cycles of double-stranded (ds)DNA and dsRNA viruses are dissimilar. In terms of nucleic acid packing, dsDNA viruses, which lack genome segmentation and intra-capsid transcriptional machinery, predominantly display single-spooled genome organizations1-8. Because the release of dsRNA into the cytoplasm triggers host defence mechanisms9, dsRNA viruses retain their genomes within a core particle that contains the enzymes required for RNA replication and transcription10-12. The genomes of dsRNA viruses vary greatly in the degree of segmentation. In members of the Reoviridae family, genomes consist of 10-12 segments and exhibit a non-spooled arrangement mediated by RNA-dependent RNA polymerases11-14. However, whether this arrangement is a general feature of dsRNA viruses remains unknown. Here, using cryo-electron microscopy to resolve the dsRNA genome structure of the tri-segmented bacteriophage ɸ6 of the Cystoviridae family, we show that dsRNA viruses can adopt a dsDNA-like single-spooled genome organization. We find that in this group of viruses, RNA-dependent RNA polymerases do not direct genome ordering, and the dsRNA can adopt multiple conformations. We build a model that encompasses 90% of the genome, and use this to quantify variation in the packing density and to characterize the different liquid crystalline geometries that are exhibited by the tightly compacted nucleic acid. Our results demonstrate that the canonical model for the packing of dsDNA can be extended to dsRNA viruses.

Original publication

DOI

10.1038/s41586-019-1229-9

Type

Journal article

Journal

Nature

Publication Date

06/2019

Volume

570

Pages

252 - 256

Addresses

Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.

Keywords

Bacteriophage phi 6, RNA Replicase, RNA, Double-Stranded, RNA, Viral, Cryoelectron Microscopy, DNA Packaging, Nucleic Acid Conformation, Genome, Viral, Models, Molecular, Liquid Crystals