Requirements for QC and Shipment of Bacterial DNA

OGC receives thousands of samples every month. Help us to keep your samples safe and to return good quality data in a timely manner by taking the time to read and follow these instructions. Failure to follow these guidelines and incorrect submission of samples could:

1. Delay the initiation of your project
2. Put your samples at risk
3. Lead to poorer quality data
4. Result in additional charges being applied to your project

Obviously, as we’ve written this document for you, we think it is all important but there are some really key points, which are highlighted with this symbol:

If in doubt at any point then please consult your project manager.

The schematic below is designed to give you an overview of the steps that you are required to take, to ensure the necessary amount of material is provided in the correct container, at the right temperature and with all the required paperwork. Further details are provided below the schematic. We have outlined the steps to take in order. However, we recommend reading the whole document through prior to sample extraction and collection.

OGC offers a number of different library types from genomic DNA and it’s important to get the right set of guidelines.

The library types that you will see on your quote and that are discussed here are High Multiplex Whole Genome and MMM, specifically utilised for bacterial genome sequencing, although they can be used for low-pass sequencing of other genomes.

If your quote states any other library type then this is not the document for you, please return to the main page or contact your project manager if you are unsure.
How should DNA be QC’d?

DNA should be RNase treated, either during or after the extraction, and samples cleaned up.

- Please note that samples will be QC’d by OGC using tapestation, which will not detect RNA, so you must make sure that your samples are free from RNA before sending.

Quantification should be done by Qubit or Picogreen. Nanodrop greatly overestimates the amount of material present and reliance on this method of quantification will risk the library failing. There is also likely to be some instrument to instrument variation, even with fluorescence-based methods. Because of these factors, you should give us more than the minimum requirement.

Nanodrop should however be used to confirm that the 260/280 ratio is between 1.8 and 2 and that the 260/230 ratio is between 2-2.2, this will not be done by OGC.

- If the 260/230 or 260/280 ratios you record on the submission form are out-of-range, we will still proceed with library prep.

DNA should also be run on a 0.7% agarose gel to check the integrity and to ensure that no RNA is present. On the gel, samples should give distinct bands with no smearing.

- To prevent delays to projects that are batch-processed using our automated systems, in the event that a sample does not meet our QC criteria, we will still proceed with the library preparation. Your project manager will contact you to inform you regarding the problems with sample QC. It will then be at your discretion whether you sequence the library. If you choose not to sequence the library and instead provide us with a replacement sample(s), drop that sample or cancel your project, you will still be charged for library prep and sample QC. Additional costs for QC and library preparation will be levied for each replacement sample. All new samples will be added to the end of the queue for the next batch of samples to be processed.

How much DNA do I need to provide and in what?

The concentrations and volumes required for this particular library preparation type are given in the table below.

In order to keep costs low and processing time to a minimum, for this ultra-high-throughput protocol, we require that samples are normalized to 20-30ng/µl and in a volume of 60µl of 10mM Tris-Cl, pH 8.5.

- Samples received outside of this concentration range will be returned to you or will be subject to an additional charge and delay to processing.

<table>
<thead>
<tr>
<th>Type of Library Prep</th>
<th>Amount required</th>
<th>Concentration</th>
<th>Volume</th>
<th>OD 260/280</th>
<th>Agarose gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Multiplex Whole Genome or MMM</td>
<td>1.2-1.8µg</td>
<td>20-30ng/µl</td>
<td>60µl</td>
<td>1.8-2.0</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

- It is easier, cheaper and faster for you to arrange for leftover material to be retrieved than it is to resend top-up material for additional rounds of QC, which will also result in project delays and additional cost.

If you are not able to obtain the required amount of DNA, please contact your project manager to discuss alternative options.
OK, I have my DNA, what happens next?

Once you have your DNA, it is necessary to plate them correctly.

We will only accept samples in plates. If the samples are in the wrong containers, we reserve the right to return at your cost or to charge a processing fee.

Please use this checklist to ensure that samples and plates are correctly packaged. Many of these details can also be found in our handy video guides http://www.well.ox.ac.uk/ogc/video-sample-submission-best-practice/

1. **Correct plates and seals:** Plates and seals are of variable quality, some seals do not stick to plates properly and can allow contamination of samples. To avoid the seal from lifting and resulting contamination, please use:
 a. Fully skirted, clear plastic, 96-well plates (ThermoFisher Thermo-Fast 96 Skirted plates, catalogue #AB-0800 or 4Titude FrameStar® 96 Well Skirted PCR Plates # 4ti-0960)
 b. Sealed with an adhesive seal (Thermo Scientific Adhesive PCR Seals #AB-0558).

2. **Plate layout:** The overall plate layout should be in columns A1-H1, A2-H2 etc. with no gaps between samples. Samples that are to be multiplexed should be grouped and assembled on a plate so that samples in a given multiplex are in consecutive wells. If you are multiplexing different sample types, please discuss this with your project manager.

3. **Seal the plate thoroughly:** Please make sure the plates are sealed properly to minimize contamination, we recommend using a pen lid or credit card to apply pressure between each line of wells. Note that applying a seal to a cold surface will result in the seal lifting.

4. **Label appropriately:** The sealed sample plate must be labeled with your name and quote number. Once you receive the project number, we ask for you to add that, like the example below. If submitting multiple plates, please include Plate 1 of X on the label.

5. **Protect from extreme cold:** Plates should be placed within a plastic bag and the bag sealed with tape (to prevent dislodging in transit), before putting on dry ice or into the freezer. This stops the plate seal from becoming brittle and lifting. Ideally, the bagged plate would be placed in a small box before putting into a larger polystyrene box with dry ice.

Only one aliquot of each sample should be submitted unless by prior arrangement.
Before delivering samples, complete the paperwork

These steps should be carried out at least two days before you wish to ship your samples, in order to give your project manager time to log the details in to our database.

Step 1
Sign your quotation and return via email along with a PO number. If outside the University of Oxford, please provide a PDF copy of the PO.

Step 2
Download the latest submission form from www.well.ox.ac.uk/ogc/guides/. It is important to always use the most recent version, because we make improvements and old versions will not work with our login process.

Complete the sample submission form, ensuring that the label on your plate(s) matches exactly the entry in the submission form.

To ensure there are no delays in initiating your project, please confirm that all the requested information is provided on the submission excel form. There are more details on the form itself but the minimum required information is:

- sample name
- reference genome
- sample concentration (except for the occasional sample where quantification is impossible)
- volume
- pooling (if applicable, e.g. specify multiplex groupings by mp1 for all samples in the first multiplex, mp2 etc).

Please extend the table as appropriate and ensure that there are no duplicate sample names. The container ID should also be provided, this is what your plate is labelled with your name, quote number and plate number (e.g. plate 1 of 4). Once you the project number from your project manager, we ask for you to add the project number to the plate also.

In ‘additional comments’ please note if you want your samples returned and if there is a priority order (1, 2, 3 etc.) within the project, we will try to accommodate this where possible.

Email the completed form to your project manager.

Step 3
Wait for confirmation of receipt before shipping samples. Your project manager will assign you a project number. Your plates are already labelled, but need to have this project number added. This can be done without defrosting, by wiping the edge with a tissue prior to labelling. Please also include the project number on the packaging and then ship accordingly following the instructions in the next section.

To ensure the safety of your samples, please do not send them to us prior to receiving notification by email from your project manager that it is OK to do so. Samples received unexpectedly, poorly labeled or without correct paperwork will delay the initiation of your project, risk the safety of your samples and incur additional charges.
How should I package and ship my samples?

All samples should be on dry ice, with care taken to protect the plates and seals as detailed above. The amount of dry ice that you require will depend on the size and quality of your container as well as the number of days that the parcel will be in transit. Please include extra dry ice if your parcel needs to go through customs as there can be unexpected delays. If in doubt, please speak with your courier for advice.

There are three ways to deliver samples.

1. **I can access WHG and can drop them into the freezer in Lab 3**

 This will apply if you are either based in WHG or have had your swipecard activated for the building. When dropping off your samples, there is a designated freezer for sample drop off. The freezer is located in the first bay on the south side of Lab 3. A plan of Lab 3 and the location of the freezer can be seen in Appendix 2.

 After 1pm, nobody will return to check for samples until the following working day. If you are unable to drop off your samples between 9am and 1pm, please arrange for a colleague to do so or wait until the following working day.

2. **I can get to the WHG building but can’t get in**

 This will apply to you if you are Oxford-based or able to transport your samples to Oxford on the day of submission. It will be possible to leave samples in a cupboard in reception (see image below) between 9am and 1pm on any working day—this area is not secure and will become warm, please put all samples on dry ice.

 After 1pm, nobody will return to check for samples until the following working day. If you are unable to drop off your samples in this time slot, please wait until the next working day or ask a colleague to send the samples in your absence.

3. **I can’t bring the samples to you, I need to ship them.**

 To avoid any delays in customs over the weekend, samples should only be shipped between Monday and Wednesday (or 2 working days before the start of the weekend in the case of bank holidays). As your DNA needs to be on dry ice, please be aware that some couriers have specific guidelines for shipping samples on dry ice and should be contacted for details prior to packaging up your samples. If shipping from overseas, please add plenty of dry ice in case the samples are held at customs and do not include a copy of the quote, as this can lead customs officials to believe that the value of the shipped goods is the price on the quote.

 Please send to:

 High-Throughput Genomics (Sequencing),
 Wellcome Centre for Human Genetics,
 Roosevelt Drive,
 Oxford.
 OX3 7BN

The essential steps of this process are summarized as a checklist in Appendix 1.
Appendix 1

Checklist for Bacterial DNA

After reading the full text, this checklist can be used to ensure all the steps are carried out prior sending any samples to OGC. These are only brief summaries of each step and this checklist should not be used as a standalone document.

<table>
<thead>
<tr>
<th>No.</th>
<th>Processes</th>
<th>Tick</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generation & QC for Bacterial DNA</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>RNase Treatment & Clean Up</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Quantification (Qubit/ Picogreen)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>260/230 or 260/280 ratio</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>0.7% Agrose Gel Check</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Suitable mass & volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plating</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Fully skirted, clear plastic, 96 well plates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(NB we will only accept samples in the plates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>detailed above)</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Correct layout (vertically and no gaps)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Sealed with our recommended adhesive seal</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Correct label on the side of plate (name, quote,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>project number, plate number)</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Placed in a labelled plastic bag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paperwork PRIOR sending</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Quotation signed and returned</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Emailed purchase order to project manager</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Completed sample submission form</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Emailed sample submission form to project manager</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Received ‘go-ahead’ from project manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Packaging & Shipping</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Suitable box with dry ice</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Delivery</td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2

Lab 3 entrance

Submission freezer

Lab 3 entrance