Prof Anthony P Monaco
| Research Area: | Genetics and Genomics |
|---|---|
| Technology Exchange: | Bioinformatics, Chromosome mapping, Microscopy (Confocal), Protein interaction, SNP typing and Statistical genetics |
| Keywords: | neurodevelopmental disorders, autism, specific language impairment, dyslexia, chorea acanthocytosis and menkes disease |
| Web Links: |
The Neurogenetics group aims to identify and characterize genes involved in human neurodevelopmental and neurological disorders. The study of the genetic basis of these disorders is the first step towards understanding the mechanism of disease and normal brain function as well as providing better strategies for therapy. The group works in two main areas: (1) The genetics of neurodevelopmental disorders including complex genetic diseases such as autism, specific language impairment and developmental dyslexia. (2) The positional cloning and functional characterization of monogenic neurological diseases including, chorea acanthocytosis (CHAC), speech and language disorder (SPCH1), and Menkes disease.
There are no collaborations listed for this principal investigator.
2004. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet, 75 (6), pp. 1046-1058. Read abstract | Read more
Several quantitative trait loci (QTLs) that influence developmental dyslexia (reading disability [RD]) have been mapped to chromosome regions by linkage analysis. The most consistently replicated area of linkage is on chromosome 6p23-21.3. We used association analysis in 223 siblings from the United Kingdom to identify an underlying QTL on 6p22.2. Our association study implicates a 77-kb region spanning the gene TTRAP and the first four exons of the neighboring uncharacterized gene KIAA0319. The region of association is also directly upstream of a third gene, THEM2. We found evidence of these associations in a second sample of siblings from the United Kingdom, as well as in an independent sample of twin-based sibships from Colorado. One main RD risk haplotype that has a frequency of approximately 12% was found in both the U.K. and U.S. samples. The haplotype is not distinguished by any protein-coding polymorphisms, and, therefore, the functional variation may relate to gene expression. The QTL influences a broad range of reading-related cognitive abilities but has no significant impact on general cognitive performance in these samples. In addition, the QTL effect may be largely limited to the severe range of reading disability. Hide abstract
2002. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet, 70 (5), pp. 1318-1327. Read abstract | Read more
The FOXP2 gene, located on human 7q31 (at the SPCH1 locus), encodes a transcription factor containing a polyglutamine tract and a forkhead domain. FOXP2 is mutated in a severe monogenic form of speech and language impairment, segregating within a single large pedigree, and is also disrupted by a translocation in an isolated case. Several studies of autistic disorder have demonstrated linkage to a similar region of 7q (the AUTS1 locus), leading to the proposal that a single genetic factor on 7q31 contributes to both autism and language disorders. In the present study, we directly evaluate the impact of the FOXP2 gene with regard to both complex language impairments and autism, through use of association and mutation screening analyses. We conclude that coding-region variants in FOXP2 do not underlie the AUTS1 linkage and that the gene is unlikely to play a role in autism or more common forms of language impairment. Hide abstract
2002. A genomewide linkage screen for relative hand skill in sibling pairs. Am J Hum Genet, 70 (3), pp. 800-805. Read abstract | Read more
Genomewide quantitative-trait locus (QTL) linkage analysis was performed using a continuous measure of relative hand skill (PegQ) in a sample of 195 reading-disabled sibling pairs from the United Kingdom. This was the first genomewide screen for any measure related to handedness. The mean PegQ in the sample was equivalent to that of normative data, and PegQ was not correlated with tests of reading ability (correlations between minus sign0.13 and 0.05). Relative hand skill could therefore be considered normal within the sample. A QTL on chromosome 2p11.2-12 yielded strong evidence for linkage to PegQ (empirical P=.00007), and another suggestive QTL on 17p11-q23 was also identified (empirical P=.002). The 2p11.2-12 locus was further analyzed in an independent sample of 143 reading-disabled sibling pairs, and this analysis yielded an empirical P=.13. Relative hand skill therefore is probably a complex multifactorial phenotype with a heterogeneous background, but nevertheless is amenable to QTL-based gene-mapping approaches. Hide abstract
2002. A genomewide scan identifies two novel loci involved in specific language impairment. Am J Hum Genet, 70 (2), pp. 384-398. Read abstract | Read more
Approximately 4% of English-speaking children are affected by specific language impairment (SLI), a disorder in the development of language skills despite adequate opportunity and normal intelligence. Several studies have indicated the importance of genetic factors in SLI; a positive family history confers an increased risk of development, and concordance in monozygotic twins consistently exceeds that in dizygotic twins. However, like many behavioral traits, SLI is assumed to be genetically complex, with several loci contributing to the overall risk. We have compiled 98 families drawn from epidemiological and clinical populations, all with probands whose standard language scores fall > or =1.5 SD below the mean for their age. Systematic genomewide quantitative-trait-locus analysis of three language-related measures (i.e., the Clinical Evaluation of Language Fundamentals-Revised [CELF-R] receptive and expressive scales and the nonword repetition [NWR] test) yielded two regions, one on chromosome 16 and one on 19, that both had maximum LOD scores of 3.55. Simulations suggest that, of these two multipoint results, the NWR linkage to chromosome 16q is the most significant, with empirical P values reaching 10(-5), under both Haseman-Elston (HE) analysis (LOD score 3.55; P=.00003) and variance-components (VC) analysis (LOD score 2.57; P=.00008). Single-point analyses provided further support for involvement of this locus, with three markers, under the peak of linkage, yielding LOD scores >1.9. The 19q locus was linked to the CELF-R expressive-language score and exceeds the threshold for suggestive linkage under all types of analysis performed-multipoint HE analysis (LOD score 3.55; empirical P=.00004) and VC (LOD score 2.84; empirical P=.00027) and single-point HE analysis (LOD score 2.49) and VC (LOD score 2.22). Furthermore, both the clinical and epidemiological samples showed independent evidence of linkage on both chromosome 16q and chromosome 19q, indicating that these may represent universally important loci in SLI and, thus, general risk factors for language impairment. Hide abstract
2001. Talk of genetics and vice versa. Nature, 413 (6855), pp. 465-466. | Read more
2001. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet, 69 (3), pp. 570-581. Read abstract | Read more
Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes. Hide abstract
2001. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet, 28 (2), pp. 119-120. Read abstract | Read more
Chorea-acanthocytosis (CHAC, MIM 200150) is an autosomal recessive neurodegenerative disorder characterized by the gradual onset of hyperkinetic movements and abnormal erythrocyte morphology (acanthocytosis). Neurological findings closely resemble those observed in Huntington disease. We identified a gene in the CHAC critical region and found 16 different mutations in individuals with chorea-acanthocytosis. CHAC encodes an evolutionarily conserved protein that is probably involved in protein sorting. Hide abstract
2001. Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet, 10 (9), pp. 973-982. Read abstract
Autism is a neurodevelopmental disorder that usually arises on the basis of a complex genetic predisposition. The most significant susceptibility region in the first whole genome screen of multiplex families was on chromosome 7q, although this linkage was evident only in UK IMGSAC families. Subsequently all other genome screens of non-UK families have found some evidence of increased allele sharing in an overlapping 40 cM region of 7q. To further characterize this susceptibility locus, linkage analysis has now been completed on 170 multiplex IMGSAC families. Using a 5 cM marker grid, analysis of 125 sib pairs meeting stringent inclusion criteria resulted in a multipoint maximum LOD score (MLS) of 2.15 at D7S477, whereas analysis of all 153 sib pairs generated an MLS of 3.37. The 71 non-UK sib pairs now contribute to this linkage. Linkage disequilibrium mapping identified two regions of association-one lying under the peak of linkage, the other some 27 cM distal. These results are supported in part by findings in independent German and American singleton families. Hide abstract



