Genetic Contributions to Specific Language Impairment (SLI)

Dianne Newbury
Wellcome Trust Centre for Human Genetics, Oxford University
dianne@well.ox.ac.uk
www.well.ox.ac.uk/newbury
@diannenewbury
Specific Language Impairment (SLI)

• Impairment in acquisition and use of language
 – Severe
 • Impairs every day functioning
 – Persistent
 • Not language delay
 – Unexpected
 • Adequate opportunity of acquisition
 • Adequate intelligence
 • No hearing loss
 • No neurological/psychiatric disorders
 • Twinning, bilingualism
Specific Language Impairment (SLI)

- SLI affects 2-7% of preschool children
- Highly heritable
- Overlaps with other neurodevelopmental disorders
Genetic Disorders

• Classic genetic syndromes usually involve gross changes to the DNA sequence
• They may involve:
 – An alteration to the composition of the sequence
 – The deletion or duplication of genetic material
• These syndromes are usually very severe and very rare
• Most genetic conditions are not caused by a single deleterious mutation
Mutations and Variations

• Mutation
 – Change to the DNA sequence that has **big, direct effect** upon protein function
 – **Rare** in populations

• Variation
 – Change to the DNA sequence that has **little effect** upon protein function
 – **Common** in populations
 – ~15 million DNA variants catalogued
Complex Genetic Disorders

- Caused by interactions between **genetic variants** and **environmental** factors
- The more of genetic ‘**risk**’ **variants** an individual carries the more likely they are to develop the disorder
Complex Genetic Disorders

• Caused by interactions between **genetic variants** and **environmental** factors

• The more of genetic ‘risk’ **variants** an individual carries the more likely they are to develop the disorder
 – The exact **combination** of risk variants causing disease varies from person to person
 – Each single variation in isolation, only has a very small effect
 – The risk can often be **modified by the environment**
 – Complex disorders cannot be ‘corrected’

• 4-10 variants?
GWAS

- Genome wide association studies (GWAS)
- >1 million SNPs
- GWAS do not explain a large proportion heritability/variance
- Risk loci increase risk by 1.1-1.2 fold
Missing Heritability

• Power
 – Many risk variants each with a small effect size

• Alternative genetic risk models
 – Rare variants
 – Copy number variants (CNVs)
 – Interactions (gene-gene, gene-environment)
 – Parent of origin effects
 – Epigenetics
Really Complex Genetic Disorders

- Your risk is a balance between:
 - Rare mutations or CNVs with high risks
 - Common variations or CNVs with low risks
 - Environmental and background modifier effects
 - Model needs to allow for interactive risk variables
Genetic Architecture of SLI & Dyslexia

• SLI and dyslexia are (really) complex disorders
• **Linkage and association** techniques have been used to identify candidate genes
 – *CMIP, ATP2C2, CNTNAP2*
 – *KIAA0319, DCDC2, Dyx1c1, ROBO1, MRPL19/C2orf3*
• Some variations contribute across disorders
• **Common variants** that play a role in a classical complex disorder model
Genetic Architecture of SLI & Dyslexia

• Predisposition to disorder or contribution across the range?
 – KIAA0319 & CMIP contribute across the range
 – ATP2C2 & DCDC2 specific disorder risks

• Evidence for overlapping risk effects?
 – Dyslexia and SLI candidate genes separate
 • KIAA0319 & CMIP associated with language and reading
 – CNTNAP2 associated with SLI & ASD

• Are there high effect rare variants?
 – Copy Number Variants (CNVs)
Copy Number Variants

- Submicroscopic **deletions or duplications**
 - 6-10 common copy number changes per individual
 - Rare and *de novo* CNVs
 - Presence can be inferred from SNP data
- Autism, ADHD, ILD
 - Increased burden of **rare, large, genic CNVs**
- Autism singletons
 - Higher rate of **de novo CNVs**
- Dyslexia
 - No difference in large CNV burden in dyslexia
CNVs in SLI

- 127 SLI cases, 269 adult UK population controls
 - Increased burden
 - Larger events
 - Higher gene hit rate

- No large (>500Kb events)

- Rare and de novo events
 - No difference between cases and controls
CNVs in SLI

- Similar trends seen for common events in family members
 - Unaffected sibs/parents
 - Affected sibs/parents

![Bar chart showing comparison of CNV numbers and gene hits across different groups](chart.png)

- Controls
- Cases
- Family members
- Affected family members
- Unaffected family members

- Manuscript in preparation
CNVs in SLI

• Similar trends seen for common events in family members
 – Unaffected sibs/parents
 – Affected sibs/parents
• CNVs may play a role in SLI aetiology
 – Likely to be driven by common events that are generally increased in affected families
 – Hit position in affected family members

 – Manuscript in preparation
Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment

Fabiola Ceroni¹, Nuala H Simpson², Clyde Francks³, Gillian Baird⁵, Gina Conti-Ramsden⁶, Ann Clark⁷, Patrick F Bolton⁸, Elizabeth R Hennessy⁹, Peter Donnelly², David R Bentley¹⁰, Hilary Martin², IMGSAC¹¹, SLI Consortium², WGS500 Consortium², Jeremy Parr¹¹, Alistair T Pagnamenta², Elena Maestrini¹, Elena Bacchelli¹, Simon E Fisher³ and Dianne F Newbury*²

- Homozygous deletion
- 21Kb across exon 5 ZNF277
- Novel microdeletion
- Leads to a frameshift (stop codon exon 7)
- AUTS1 locus, chromosome 7
ZNF277 Cosegregation

- Deletion **inherited** by proband
 - One copy from each parent
 - Father – speech impairment
 - Mother - dyslexia
- Not inherited by siblings
 - Sister – SLI
 - Brother – language delay
ZNF277 Screen

- **SLI families**
 - 322 families, 1234 individuals
 - 545 parents, 318 probands, 371 siblings

- **Population Controls**
 - 130 sequence controls
 - 224 ECACC controls

- **ASD families**
 - 252 families, 1021 individuals

![Bar chart showing frequency of SLI, Controls, and ASD in Families, Probands, Parents, and Sibs]
Characterization of a Family with Rare Deletions in CNTNAP5 and DOCK4 Suggests Novel Risk Loci for Autism and Dyslexia

The Wellcome Trust Centre for Human Genetics
DOCK4 Microdeletion

- Microdeletion in *DOCK4*
 - Lead to an *IMMP2L-DOCK4* fusion transcript
 - Described in an ASD family & a dyslexia family
 - Incomplete cosegregation
 - Do not affect the expression levels of *ZNF277*

- *DOCK4* and *ZNF277* microdeletions confer **independent** risks
- Rare variants with moderate risk
ZNF277 Microdeletions

- Microdeletion in ZNF277
 - Deleterious upon gene function
 - More frequent in SLI families than controls
 - Specifically affect the expression levels of ZNF277
 - ZNF277 function may contribute to SLI
 - ZNF277 microdeletion may represent a risk variant for SLI
 - No more frequent in ASD families than controls
 - Do not affect the expression levels of flanking genes
 - Does not contribute to risk of ASD
 - Flanking genes may contribute to ASD risk
Complex Contributions

• **ZNF277 microdeletions**
• More common in children with SLI
• But incomplete cosegregation
• Variations in risk factor distribution and effects
• Even within same family
Really, Really Complex Disorders

- Even in a **single family**, the risk variables may be a complex mix of factors.

- Your risk is a balance between:
 - **Rare mutations or CNVs** with high risks
 - **Common variations or CNVs** with low risks
 - **Environmental** and background **modifier** effects
 - Model needs to allow for **interactive risk variables**
Summary

• Genes and proteins interact in networks to regulate cell mechanisms
• They are part of a complex and dynamic system
• New genetic technologies mean that it is easier to identify genetic changes at a higher resolution
 – SNPs, CNVs, mutations
• But we need to learn how to interpret identified changes
 • Importance of sample sizes
 • Importance of understanding modifier effects
 • Integration of comprehensive data across fields
 • Integration of factors into statistical modelling
Acknowledgments

The Newbury Lab members are:
Dianne Newbury, Nuala Sykes, Ron Nudel, Rose Reader, Laura Covill, May Chan & Fabiola Ceroni

We are indebted to all individuals who give DNA, which is completely essential for our research.

SLI Consortium (SLIC)
Newcomen Centre, Guys Hospital, Manchester Language Study, Univ Edinburgh, Univ Aberdeen, Queen Margaret Univ, Institute of Psychiatry, Oxford Univ, Strathclyde Univ, Cambridge Univ

Thanks also to:
Anthony Monaco, Silvia Parachinni, Simon Fisher, Antonio Velayos-Baeza, Clotilde Levecque, Zoe Holloway, Sam Knight, Dorothy Bishop, Laura Addis

Our research is funded by the MRC, the John Fell Fund & St John’s College

Much of the work described today was completed by:
Fabiola Ceroni & Nuala Sykes